Visible to the public Biblio

Filters: Keyword is MEBN  [Clear All Filters]
2021-06-01
Patnaikuni, Shrinivasan, Gengaje, Sachin.  2020.  Properness and Consistency of Syntactico-Semantic Reasoning using PCFG and MEBN. 2020 International Conference on Communication and Signal Processing (ICCSP). :0554–0557.
The paper proposes a formal approach for parsing grammatical derivations in the context of the principle of semantic compositionality by defining a mapping between Probabilistic Context Free Grammar (PCFG) and Multi Entity Bayesian Network (MEBN) theory, which is a first-order logic for modelling probabilistic knowledge bases. The principle of semantic compositionality states that meaning of compound expressions is dependent on meanings of constituent expressions forming the compound expression. Typical pattern analysis applications focus on syntactic patterns ignoring semantic patterns governing the domain in which pattern analysis is attempted. The paper introduces the concepts and terminologies of the mapping between PCFG and MEBN theory. Further the paper outlines a modified version of CYK parser algorithm for parsing PCFG derivations driven by MEBN. Using Kullback- Leibler divergence an outline for proving properness and consistency of the PCFG mapped with MEBN is discussed.
2015-05-06
Boruah, A., Hazarika, S.M..  2014.  An MEBN framework as a dynamic firewall's knowledge flow architecture. Signal Processing and Integrated Networks (SPIN), 2014 International Conference on. :249-254.

Dynamic firewalls with stateful inspection have added a lot of security features over the stateless traditional static filters. Dynamic firewalls need to be adaptive. In this paper, we have designed a framework for dynamic firewalls based on probabilistic ontology using Multi Entity Bayesian Networks (MEBN) logic. MEBN extends ordinary Bayesian networks to allow representation of graphical models with repeated substructures and can express a probability distribution over models of any consistent first order theory. The motivation of our proposed work is about preventing novel attacks (i.e. those attacks for which no signatures have been generated yet). The proposed framework is in two important parts: first part is the data flow architecture which extracts important connection based features with the prime goal of an explicit rule inclusion into the rule base of the firewall; second part is the knowledge flow architecture which uses semantic threat graph as well as reasoning under uncertainty to fulfill the required objective of providing futuristic threat prevention technique in dynamic firewalls.