Biblio
In this paper, we propose to impose a multiscale contextual loss for image style transfer based on Convolutional Neural Networks (CNN). In the traditional optimization framework, a new stylized image is synthesized by constraining the high-level CNN features similar to a content image and the lower-level CNN features similar to a style image, which, however, appears to lost many details of the content image, presenting unpleasing and inconsistent distortions or artifacts. The proposed multiscale contextual loss, named Haar loss, is responsible for preserving the lost details by dint of matching the features derived from the content image and the synthesized image via wavelet transform. It endows the synthesized image with the characteristic to better retain the semantic information of the content image. More specifically, the unpleasant distortions can be effectively alleviated while the style can be well preserved. In the experiments, we show the visually more consistent and simultaneously well-stylized images generated by incorporating the multiscale contextual loss.
As increasingly more enterprises are deploying cloud file-sharing services, this adds a new channel for potential insider threats to company data and IPs. In this paper, we introduce a two-stage machine learning system to detect anomalies. In the first stage, we project the access logs of cloud file-sharing services onto relationship graphs and use three complementary graph-based unsupervised learning methods: OddBall, PageRank and Local Outlier Factor (LOF) to generate outlier indicators. In the second stage, we ensemble the outlier indicators and introduce the discrete wavelet transform (DWT) method, and propose a procedure to use wavelet coefficients with the Haar wavelet function to identify outliers for insider threat. The proposed system has been deployed in a real business environment, and demonstrated effectiveness by selected case studies.
Recent advances in adaptive filter theory and the hardware for signal acquisition have led to the realization that purely linear algorithms are often not adequate in these domains. Nonlinearities in the input space have become apparent with today's real world problems. Algorithms that process the data must keep pace with the advances in signal acquisition. Recently kernel adaptive (online) filtering algorithms have been proposed that make no assumptions regarding the linearity of the input space. Additionally, advances in wavelet data compression/dimension reduction have also led to new algorithms that are appropriate for producing a hybrid nonlinear filtering framework. In this paper we utilize a combination of wavelet dimension reduction and kernel adaptive filtering. We derive algorithms in which the dimension of the data is reduced by a wavelet transform. We follow this by kernel adaptive filtering algorithms on the reduced-domain data to find the appropriate model parameters demonstrating improved minimization of the mean-squared error (MSE). Another important feature of our methods is that the wavelet filter is also chosen based on the data, on-the-fly. In particular, it is shown that by using a few optimal wavelet coefficients from the constructed wavelet filter for both training and testing data sets as the input to the kernel adaptive filter, convergence to the near optimal learning curve (MSE) results. We demonstrate these algorithms on simulated and a real data set from food processing.