Visible to the public Biblio

Filters: Keyword is adaptive filtering  [Clear All Filters]
2017-10-04
Gao, Shu Juan, Jhang, Seong Tae.  2016.  Infrared Target Tracking Using Multi-Feature Joint Sparse Representation. Proceedings of the International Conference on Research in Adaptive and Convergent Systems. :40–45.
This paper proposed a novel sparse representation-based infrared target tracking method using multi-feature fusion to compensate for incomplete description of single feature. In the proposed method, we extract the intensity histogram and the data on-Local Entropy and Local Contrast Mean Difference information for feature representation. To combine various features, particle candidates and multiple feature descriptors of dictionary templates were encoded as kernel matrices. Every candidate particle was sparsely represented as a linear combination of a set of atom vectors of a dictionary. Then, the sparse target template representation model was efficiently constructed using a kernel trick method. Finally, under the framework of particle filter the weights of particles were determined by sparse coefficient reconstruction errors for tracking. For tracking, a template update strategy employing Adaptive Structural Local Sparse Appearance Tracking (ASLAS) was implemented. The experimental results on benchmark data set demonstrate the better performance over many existing ones.
Pham, Thuy Thi Thanh, Le, Thi-Lan, Dao, Trung-Kien.  2016.  Fusion of Wifi and Visual Signals for Person Tracking. Proceedings of the Seventh Symposium on Information and Communication Technology. :345–351.
Person tracking is crucial in any automatic person surveillance systems. In this problem, person localization and re-identification (Re-ID) are both simultaneously processed to show separated trajectories for each individual. In this paper, we propose to use mixture of WiFi and camera systems for person tracking in indoor surveillance regions covered by WiFi signals and disjointed camera FOVs (Field of View). A fusion method is proposed to combine the position observations achieved from each single system of WiFi or camera. The combination is done based on an optimal assignment between the position observations and predicted states from camera and WiFi systems. The correction step of Kalman filter is then applied for each tracker to give out state estimations of locations. The fusion method allows tracking by identification in non-overlapping cameras, with clear identity information taken from WiFi adapter. The experiments on a multi-model dataset show outperforming tracking results of the proposed fusion method in comparison with vision-based only method.
Bender, Michael A., Demaine, Erik D., Ebrahimi, Roozbeh, Fineman, Jeremy T., Johnson, Rob, Lincoln, Andrea, Lynch, Jayson, McCauley, Samuel.  2016.  Cache-Adaptive Analysis. Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures. :135–144.
Memory efficiency and locality have substantial impact on the performance of programs, particularly when operating on large data sets. Thus, memory- or I/O-efficient algorithms have received significant attention both in theory and practice. The widespread deployment of multicore machines, however, brings new challenges. Specifically, since the memory (RAM) is shared across multiple processes, the effective memory-size allocated to each process fluctuates over time. This paper presents techniques for designing and analyzing algorithms in a cache-adaptive setting, where the RAM available to the algorithm changes over time. These techniques make analyzing algorithms in the cache-adaptive model almost as easy as in the external memory, or DAM model. Our techniques enable us to analyze a wide variety of algorithms — Master-Method-style algorithms, Akra-Bazzi-style algorithms, collections of mutually recursive algorithms, and algorithms, such as FFT, that break problems of size N into subproblems of size Theta(Nc). We demonstrate the effectiveness of these techniques by deriving several results: 1. We give a simple recipe for determining whether common divide-and-conquer cache-oblivious algorithms are optimally cache adaptive. 2. We show how to bound an algorithm's non-optimality. We give a tight analysis showing that a class of cache-oblivious algorithms is a logarithmic factor worse than optimal. 3. We show the generality of our techniques by analyzing the cache-oblivious FFT algorithm, which is not covered by the above theorems. Nonetheless, the same general techniques can show that it is at most O(loglog N) away from optimal in the cache adaptive setting, and that this bound is tight. These general theorems give concrete results about several algorithms that could not be analyzed using earlier techniques. For example, our results apply to Fast Fourier Transform, matrix multiplication, Jacobi Multipass Filter, and cache-oblivious dynamic-programming algorithms, such as Longest Common Subsequence and Edit Distance. Our results also give algorithm designers clear guidelines for creating optimally cache-adaptive algorithms.
Donkers, Tim, Loepp, Benedikt, Ziegler, Jürgen.  2016.  Tag-Enhanced Collaborative Filtering for Increasing Transparency and Interactive Control. Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization. :169–173.
To increase transparency and interactive control in Recommender Systems, we extended the Matrix Factorization technique widely used in Collaborative Filtering by learning an integrated model of user-generated tags and latent factors derived from user ratings. Our approach enables users to manipulate their preference profile expressed implicitly in the (intransparent) factor space through explicitly presented tags. Furthermore, it seems helpful in cold-start situations since user preferences can be elicited via meaningful tags instead of ratings. We evaluate this approach and present a user study that to our knowledge is the most extensive empirical study of tag-enhanced recommending to date. Among other findings, we obtained promising results in terms of recommendation quality and perceived transparency, as well as regarding user experience, which we analyzed by Structural Equation Modeling.
Waitelonis, Jörg, Jürges, Henrik, Sack, Harald.  2016.  Don'T Compare Apples to Oranges: Extending GERBIL for a Fine Grained NEL Evaluation. Proceedings of the 12th International Conference on Semantic Systems. :65–72.
In recent years, named entity linking (NEL) tools were primarily developed as general approaches, whereas today numerous tools are focusing on specific domains such as e.g. the mapping of persons and organizations only, or the annotation of locations or events in microposts. However, the available benchmark datasets used for the evaluation of NEL tools do not reflect this focalizing trend. We have analyzed the evaluation process applied in the NEL benchmarking framework GERBIL [16] and its benchmark datasets. Based on these insights we extend the GERBIL framework to enable a more fine grained evaluation and in deep analysis of the used benchmark datasets according to different emphases. In this paper, we present the implementation of an adaptive filter for arbitrary entities as well as a system to automatically measure benchmark dataset properties, such as the extent of content-related ambiguity and diversity. The implementation as well as a result visualization are integrated in the publicly available GERBIL framework.
Van, Hoang Thien, Van Vu, Giang, Le, Thai Hoang.  2016.  Fingerprint Enhancement for Direct Grayscale Minutiae Extraction by Combining MFRAT and Gabor Filters. Proceedings of the Seventh Symposium on Information and Communication Technology. :360–367.
Minutiae are important features in the fingerprints matching. The effective of minutiae extraction depends greatly on the results of fingerprint enhancement. This paper proposes a novel fingerprint enhancement method for direct gray scale extracting minutiae based on combining Gabor filters with the Adaptive Modified Finite Radon Transform (AMFRAT) filters. First, the proposed method uses Gabor filters as band-pass filters for deleting the noise and clarifying ridges. Next, AMFRAT filters are applied for connecting broken ridges together, filling the created holes and clarifying linear symmetry of ridges quickly. AMFRAT is the MFRAT filter, the window size of which is adaptively adjusted according to the coherence values. The small window size is for high curvature ridge areas (small coherence value), and vice versa. As the result, the ridges are the linear symmetry areas, and more suitable for direct gray scale minutiae extraction. Finally, linear symmetry filter is only used for locating minutiae in an inverse model, as "lack of linear symmetry" occurs at minutiae points. Experimental results on FVC2004 databases DB4 (set A) shows that the proposed method is capable of improving the goodness index (GI).
Lee, Won-Jong, Hwang, Seok Joong, Shin, Youngsam, Ryu, Soojung, Ihm, Insung.  2016.  Adaptive Multi-rate Ray Sampling on Mobile Ray Tracing GPU. SIGGRAPH ASIA 2016 Mobile Graphics and Interactive Applications. :3:1–3:6.
We present an adaptive multi-rate ray sampling algorithm targeting mobile ray-tracing GPUs. We efficiently combine two existing algorithms, adaptive supersampling and undersampling, into a single framework targeting ray-tracing GPUs and extend it to a new multi-rate sampling scheme by utilizing tile-based rendering and frame-to-frame coherency. The experimental results show that our implementation is a versatile solution for future ray-tracing GPUs as it provides up to 2.98 times better efficiency in terms of performance per Watt by reducing the number of rays to be fed into the dedicated hardware and minimizing the memory operations.
2017-09-19
Hu, Xuan, Li, Banghuai, Zhang, Yang, Zhou, Changling, Ma, Hao.  2016.  Detecting Compromised Email Accounts from the Perspective of Graph Topology. Proceedings of the 11th International Conference on Future Internet Technologies. :76–82.

While email plays a growingly important role on the Internet, we are faced with more severe challenges brought by compromised email accounts, especially for the administrators of institutional email service providers. Inspired by the previous experience on spam filtering and compromised accounts detection, we propose several criteria, like Success Outdegree Proportion, Reverse Pagerank, Recipient Clustering Coefficient and Legitimate Recipient Proportion, for compromised email accounts detection from the perspective of graph topology in this paper. Specifically, several widely used social network analysis metrics are used and adapted according to the characteristics of mail log analysis. We evaluate our methods on a dataset constructed by mining the one month (30 days) mail log from an university with 118,617 local users and 11,460,399 mail log entries. The experimental results demonstrate that our methods achieve very positive performance, and we also prove that these methods can be efficiently applied on even larger datasets.

2017-09-15
Schulz, Matthias, Loch, Adrian, Hollick, Matthias.  2016.  DEMO: Demonstrating Practical Known-Plaintext Attacks Against Physical Layer Security in Wireless MIMO Systems. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :201–203.

After being widely studied in theory, physical layer security schemes are getting closer to enter the consumer market. Still, a thorough practical analysis of their resilience against attacks is missing. In this work, we use software-defined radios to implement such a physical layer security scheme, namely, orthogonal blinding. To this end, we use orthogonal frequency-division multiplexing (OFDM) as a physical layer, similarly to WiFi. In orthogonal blinding, a multi-antenna transmitter overlays the data it transmits with noise in such a way that every node except the intended receiver is disturbed by the noise. Still, our known-plaintext attack can extract the data signal at an eavesdropper by means of an adaptive filter trained using a few known data symbols. Our demonstrator illustrates the iterative training process at the symbol level, thus showing the practicability of the attack.

2017-05-18
Musto, Cataldo, Lops, Pasquale, Basile, Pierpaolo, de Gemmis, Marco, Semeraro, Giovanni.  2016.  Semantics-aware Graph-based Recommender Systems Exploiting Linked Open Data. Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization. :229–237.

The ever increasing interest in semantic technologies and the availability of several open knowledge sources have fueled recent progress in the field of recommender systems. In this paper we feed recommender systems with features coming from the Linked Open Data (LOD) cloud - a huge amount of machine-readable knowledge encoded as RDF statements - with the aim of improving recommender systems effectiveness. In order to exploit the natural graph-based structure of RDF data, we study the impact of the knowledge coming from the LOD cloud on the overall performance of a graph-based recommendation algorithm. In more detail, we investigate whether the integration of LOD-based features improves the effectiveness of the algorithm and to what extent the choice of different feature selection techniques influences its performance in terms of accuracy and diversity. The experimental evaluation on two state of the art datasets shows a clear correlation between the feature selection technique and the ability of the algorithm to maximize a specific evaluation metric. Moreover, the graph-based algorithm leveraging LOD-based features is able to overcome several state of the art baselines, such as collaborative filtering and matrix factorization, thus confirming the effectiveness of the proposed approach.

2017-02-21
S. R. Islam, S. P. Maity, A. K. Ray.  2015.  "On compressed sensing image reconstruction using linear prediction in adaptive filtering". 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2317-2323.

Compressed sensing (CS) or compressive sampling deals with reconstruction of signals from limited observations/ measurements far below the Nyquist rate requirement. This is essential in many practical imaging system as sampling at Nyquist rate may not always be possible due to limited storage facility, slow sampling rate or the measurements are extremely expensive e.g. magnetic resonance imaging (MRI). Mathematically, CS addresses the problem for finding out the root of an unknown distribution comprises of unknown as well as known observations. Robbins-Monro (RM) stochastic approximation, a non-parametric approach, is explored here as a solution to CS reconstruction problem. A distance based linear prediction using the observed measurements is done to obtain the unobserved samples followed by random noise addition to act as residual (prediction error). A spatial domain adaptive Wiener filter is then used to diminish the noise and to reveal the new features from the degraded observations. Extensive simulation results highlight the relative performance gain over the existing work.

2015-05-06
Tuia, D., Munoz-Mari, J., Rojo-Alvarez, J.L., Martinez-Ramon, M., Camps-Valls, G..  2014.  Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces. Neural Networks and Learning Systems, IEEE Transactions on. 25:1413-1419.

This brief presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces. Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define the model recursivity in the Hilbert space. For that, we exploit some properties of functional analysis and recursive computation of dot products without the need of preimaging or a training dataset. We illustrate the feasibility of the methodology in the particular case of the γ-filter, which is an infinite impulse response filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and electroencephalographic time series prediction, complex nonlinear system identification, and adaptive antenna array processing demonstrate the potential of the approach for scenarios where recursivity and nonlinearity have to be readily combined.

Tong Liu, Qian Xu, Yuejun Li.  2014.  Adaptive filtering design for in-motion alignment of INS. Control and Decision Conference (2014 CCDC), The 26th Chinese. :2669-2674.

Misalignment angles estimation of strapdown inertial navigation system (INS) using global positioning system (GPS) data is highly affected by measurement noises, especially with noises displaying time varying statistical properties. Hence, adaptive filtering approach is recommended for the purpose of improving the accuracy of in-motion alignment. In this paper, a simplified form of Celso's adaptive stochastic filtering is derived and applied to estimate both the INS error states and measurement noise statistics. To detect and bound the influence of outliers in INS/GPS integration, outlier detection based on jerk tracking model is also proposed. The accuracy and validity of the proposed algorithm is tested through ground based navigation experiments.

Liming Shi, Yun Lin.  2014.  Convex Combination of Adaptive Filters under the Maximum Correntropy Criterion in Impulsive Interference. Signal Processing Letters, IEEE. 21:1385-1388.

A robust adaptive filtering algorithm based on the convex combination of two adaptive filters under the maximum correntropy criterion (MCC) is proposed. Compared with conventional minimum mean square error (MSE) criterion-based adaptive filtering algorithm, the MCC-based algorithm shows a better robustness against impulsive interference. However, its major drawback is the conflicting requirements between convergence speed and steady-state mean square error. In this letter, we use the convex combination method to overcome the tradeoff problem. Instead of minimizing the squared error to update the mixing parameter in conventional convex combination scheme, the method of maximizing the correntropy is introduced to make the proposed algorithm more robust against impulsive interference. Additionally, we report a novel weight transfer method to further improve the tracking performance. The good performance in terms of convergence rate and steady-state mean square error is demonstrated in plant identification scenarios that include impulsive interference and abrupt changes.

Zerguine, A., Hammi, O., Abdelhafiz, A.H., Helaoui, M., Ghannouchi, F..  2014.  Behavioral modeling and predistortion of nonlinear power amplifiers based on adaptive filtering techniques. Multi-Conference on Systems, Signals Devices (SSD), 2014 11th International. :1-5.

In this paper, the use of some of the most popular adaptive filtering algorithms for the purpose of linearizing power amplifiers by the well-known digital predistortion (DPD) technique is investigated. First, an introduction to the problem of power amplifier linearization is given, followed by a discussion of the model used for this purpose. Next, a variety of adaptive algorithms are used to construct the digital predistorter function for a highly nonlinear power amplifier and their performance is comparatively analyzed. Based on the simulations presented in this paper, conclusions regarding the choice of algorithm are derived.

Arablouei, R., Werner, S., Dogancay, K..  2014.  Analysis of the Gradient-Descent Total Least-Squares Adaptive Filtering Algorithm. Signal Processing, IEEE Transactions on. 62:1256-1264.

The gradient-descent total least-squares (GD-TLS) algorithm is a stochastic-gradient adaptive filtering algorithm that compensates for error in both input and output data. We study the local convergence of the GD-TLS algoritlun and find bounds for its step-size that ensure its stability. We also analyze the steady-state performance of the GD-TLS algorithm and calculate its steady-state mean-square deviation. Our steady-state analysis is inspired by the energy-conservation-based approach to the performance analysis of adaptive filters. The results predicted by the analysis show good agreement with the simulation experiments.

Bin Sun, Shutao Li, Jun Sun.  2014.  Scanned Image Descreening With Image Redundancy and Adaptive Filtering. Image Processing, IEEE Transactions on. 23:3698-3710.

Currently, most electrophotographic printers use halftoning technique to print continuous tone images, so scanned images obtained from such hard copies are usually corrupted by screen like artifacts. In this paper, a new model of scanned halftone image is proposed to consider both printing distortions and halftone patterns. Based on this model, an adaptive filtering based descreening method is proposed to recover high quality contone images from the scanned images. Image redundancy based denoising algorithm is first adopted to reduce printing noise and attenuate distortions. Then, screen frequency of the scanned image and local gradient features are used for adaptive filtering. Basic contone estimate is obtained by filtering the denoised scanned image with an anisotropic Gaussian kernel, whose parameters are automatically adjusted with the screen frequency and local gradient information. Finally, an edge-preserving filter is used to further enhance the sharpness of edges to recover a high quality contone image. Experiments on real scanned images demonstrate that the proposed method can recover high quality contone images from the scanned images. Compared with the state-of-the-art methods, the proposed method produces very sharp edges and much cleaner smooth regions.

Zhen Jiang, Shihong Miao, Pei Liu.  2014.  A Modified Empirical Mode Decomposition Filtering-Based Adaptive Phasor Estimation Algorithm for Removal of Exponentially Decaying DC Offset. Power Delivery, IEEE Transactions on. 29:1326-1334.

This paper proposes a modified empirical-mode decomposition (EMD) filtering-based adaptive dynamic phasor estimation algorithm for the removal of exponentially decaying dc offset. Discrete Fourier transform does not have the ability to attain the accurate phasor of the fundamental frequency component in digital protective relays under dynamic system fault conditions because the characteristic of exponentially decaying dc offset is not consistent. EMD is a fully data-driven, not model-based, adaptive filtering procedure for extracting signal components. But the original EMD technique has high computational complexity and requires a large data series. In this paper, a short data series-based EMD filtering procedure is proposed and an optimum hermite polynomial fitting (OHPF) method is used in this modified procedure. The proposed filtering technique has high accuracy and convergent speed, and is greatly appropriate for relay applications. This paper illustrates the characteristics of the proposed technique and evaluates its performance by computer-simulated signals, PSCAD/EMTDC-generated signals, and real power system fault signals.

Nikolic, G., Nikolic, T., Petrovic, B..  2014.  Using adaptive filtering in single-phase grid-connected system. Microelectronics Proceedings - MIEL 2014, 2014 29th International Conference on. :417-420.

Recently, there has been a pronounced increase of interest in the field of renewable energy. In this area power inverters are crucial building blocks in a segment of energy converters, since they change direct current (DC) to alternating current (AC). Grid connected power inverters should operate in synchronism with the grid voltage. In this paper, the structure of a power system based on adaptive filtering is described. The main purpose of the adaptive filter is to adapt the output signal of the inverter to the corresponding load and/or grid signal. By involving adaptive filtering the response time decreases and quality of power delivery to the load or grid increases. A comparative analysis which relates to power system operation without and with adaptive filtering is given. In addition, the impact of variable impedance of load on quality of delivered power is considered. Results which relates to total harmonic distortion (THD) factor are obtained by Matlab/Simulink software.