Visible to the public Biblio

Filters: Keyword is radar imaging  [Clear All Filters]
2023-01-06
Wolsing, Konrad, Saillard, Antoine, Bauer, Jan, Wagner, Eric, van Sloun, Christian, Fink, Ina Berenice, Schmidt, Mari, Wehrle, Klaus, Henze, Martin.  2022.  Network Attacks Against Marine Radar Systems: A Taxonomy, Simulation Environment, and Dataset. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :114—122.
Shipboard marine radar systems are essential for safe navigation, helping seafarers perceive their surroundings as they provide bearing and range estimations, object detection, and tracking. Since onboard systems have become increasingly digitized, interconnecting distributed electronics, radars have been integrated into modern bridge systems. But digitization increases the risk of cyberattacks, especially as vessels cannot be considered air-gapped. Consequently, in-depth security is crucial. However, particularly radar systems are not sufficiently protected against harmful network-level adversaries. Therefore, we ask: Can seafarers believe their eyes? In this paper, we identify possible attacks on radar communication and discuss how these threaten safe vessel operation in an attack taxonomy. Furthermore, we develop a holistic simulation environment with radar, complementary nautical sensors, and prototypically implemented cyberattacks from our taxonomy. Finally, leveraging this environment, we create a comprehensive dataset (RadarPWN) with radar network attacks that provides a foundation for future security research to secure marine radar communication.
2022-08-12
Kafedziski, Venceslav.  2021.  Compressive Sampling Stepped Frequency GPR Using Probabilistic Structured Sparsity Models. 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :139—144.
We investigate a compressive sampling (CS) stepped frequency ground penetrating radar for detection of underground objects, which uses Bayesian estimation and a probabilistic model for the target support. Due to the underground targets being sparse, the B-scan is a sparse image. Using the CS principle, the stepped frequency radar is implemented using a subset of random frequencies at each antenna position. For image reconstruction we use Markov Chain and Markov Random Field models for the target support in the B-scan, where we also estimate the model parameters using the Expectation Maximization algorithm. The approach is tested using Web radar data obtained by measuring the signal responses scattered off land mine targets in a laboratory experimental setup. Our approach results in improved performance compared to the standard denoising algorithm for image reconstruction.
2022-03-01
Chen, Tao, Liu, Fuyue.  2021.  Radar Intra-Pulse Modulation Signal Classification Using CNN Embedding and Relation Network under Small Sample Set. 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST). :99–103.
For the intra-pulse modulation classification of radar signal, traditional deep learning algorithms have poor recognition performance without numerous training samples. Meanwhile, the receiver may intercept few pulse radar signals in the real scenes of electronic reconnaissance. To solve this problem, a structure which is made up of signal pretreatment by Smooth Pseudo Wigner-Ville (SPWVD) analysis algorithm, convolution neural network (CNN) and relation network (RN) is proposed in this study. The experimental results show that its classification accuracy is 94.24% under 20 samples per class training and the signal-to-noise ratio (SNR) is -4dB. Moreover, it can classify the novel types without further updating the network.
2021-02-15
Omori, T., Isono, Y., Kondo, K., Akamine, Y., Kidera, S..  2020.  k-Space Decomposition Based Super-resolution Three-dimensional Imaging Method for Millimeter Wave Radar. 2020 IEEE Radar Conference (RadarConf20). :1–6.
Millimeter wave imaging radar is indispensible for collision avoidance of self-driving system, especially in optically blurred visions. The range points migration (RPM) is one of the most promising imaging algorithms, which provides a number of advantages from synthetic aperture radar (SAR), in terms of accuracy, computational complexity, and potential for multifunctional imaging. The inherent problem in the RPM is that it suffers from lower angular resolution in narrower frequency band even if higher frequency e.g. millimeter wave, signal is exploited. To address this problem, the k-space decomposition based RPM has been developed. This paper focuses on the experimental validation of this method using the X-band or millimeter wave radar system, and demonstrated that our method significantly enhances the reconstruction accuracy in three-dimensional images for the two simple spheres and realistic vehicle targets.
2020-09-14
Kafedziski, Venceslav.  2019.  Compressive Sampling Stepped Frequency Ground Penetrating Radar Using Group Sparsity and Markov Chain Sparsity Model. 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS). :265–268.
We investigate an implementation of a compressive sampling (CS) stepped frequency ground penetrating radar. Due to the small number of targets, the B-scan is represented as a sparse image. Due to the nature of stepped frequency radar, smaller number of random frequencies can be used to obtain each A-scan (sparse delays). Also, the measurements obtained from different antenna positions can be reduced to a smaller number of random antenna positions. We also use the structure in the B-scan, i.e. the shape of the targets, which can be known, for instance, when detecting land mines. We demonstrate our method using radar data available from the Web from the land mine targets buried in the ground. We use group sparsity, i.e. we assume that the targets have some non-zero (and presumably known) dimension in the cross-range coordinate of the B-scan. For such targets, we also use the Markov chain model for the targets, where we simultaneously estimate the model parameters using the EMturboGAMP algorithm. Both approaches result in improved performance.
2020-06-12
Gu, Feng, Zhang, Hong, Wang, Chao, Wu, Fan.  2019.  SAR Image Super-Resolution Based on Noise-Free Generative Adversarial Network. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :2575—2578.

Deep learning has been successfully applied to the ordinary image super-resolution (SR). However, since the synthetic aperture radar (SAR) images are often disturbed by multiplicative noise known as speckle and more blurry than ordinary images, there are few deep learning methods for the SAR image SR. In this paper, a deep generative adversarial network (DGAN) is proposed to reconstruct the pseudo high-resolution (HR) SAR images. First, a generator network is constructed to remove the noise of low-resolution SAR image and generate HR SAR image. Second, a discriminator network is used to differentiate between the pseudo super-resolution images and the realistic HR images. The adversarial objective function is introduced to make the pseudo HR SAR images closer to real SAR images. The experimental results show that our method can maintain the SAR image content with high-level noise suppression. The performance evaluation based on peak signal-to-noise-ratio and structural similarity index shows the superiority of the proposed method to the conventional CNN baselines.

2018-08-23
Chowdhury, F. H., Shuvo, B., Islam, M. R., Ghani, T., Akash, S. A., Ahsan, R., Hassan, N. N..  2017.  Design, control amp;amp; performance analysis of secure you IoT based smart security system. 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.

The paper introduces a smart system developed with sensors that is useful for internal and external security. The system is useful for people living in houses, apartments, high officials, bank, and offices. The system is developed in two phases one for internal security like home another is external security like open areas, streets. The system is consist of a mobile application, capacitive sensing, smart routing these valuable features to ensure safety of life and wealth. This security system is wireless sensor based which is an effective alternative of cctv cameras and other available security systems. Efficiency of this system is developed after going through practical studies and prototyping. The end result explains the feasibility rate, positive impact factor, reliability of the system. More research is possible in future based on this system this research explains that.

2018-02-21
Purnomo, M. F. E., Kitagawa, A..  2017.  Developing basic configuration of triangle array antenna for circularly polarized-Synthetic Aperture Radar sensor application. 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). :112–117.

The development of radar technology, Synthetic Aperture Radar (SAR) and Unmanned Aerial Vehicle (UAV) requires the communication facilities and infrastructures that have variety of platforms and high quality of image. In this paper, we obtain the basic configuration of triangle array antenna using corporate feeding-line for Circularly Polarized- Synthetic Aperture Radar (CP-SAR) sensor embedded on small UAV or drone airspace with compact, small, and simple configuration. The Method of Moments (MoM) is chosen in the numerical analysis for fast calculation of the unknown current on the patch antenna. The developing of triangle array antenna is consist of four patches of simple equilateral triangle patch with adding truncated corner of each patch and resonant frequency at f = 1.25 GHz. Proximity couple, perturbation segment, single feeding method are applied to generate the circular polarization wave from radiating patch. The corporate feeding-line design is implemented by combining some T-junctions to distribute the current from input port to radiating patch and to reach 2×2 patches. The performance results of this antenna, especially for gain and axial ratio (Ar) at the resonant frequency are 11.02 dBic and 2.47 dB, respectively. Furthermore, the two-beams appeared at boresight in elevation plane have similar values each other i.e. for average beamwidth of 10 dBic-gain and the 3 dB-Ar are about 20° and 70°, respectively.

2017-02-21
Z. Zhu, M. B. Wakin.  2015.  "Wall clutter mitigation and target detection using Discrete Prolate Spheroidal Sequences". 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa). :41-45.

We present a new method for mitigating wall return and a new greedy algorithm for detecting stationary targets after wall clutter has been cancelled. Given limited measurements of a stepped-frequency radar signal consisting of both wall and target return, our objective is to detect and localize the potential targets. Modulated Discrete Prolate Spheroidal Sequences (DPSS's) form an efficient basis for sampled bandpass signals. We mitigate the wall clutter efficiently within the compressive measurements through the use of a bandpass modulated DPSS basis. Then, in each step of an iterative algorithm for detecting the target positions, we use a modulated DPSS basis to cancel nearly all of the target return corresponding to previously selected targets. With this basis, we improve upon the target detection sensitivity of a Fourier-based technique.

2015-05-06
Thu Trang Le, Atto, A.M., Trouvé, E., Nicolas, J.-M..  2014.  Adaptive Multitemporal SAR Image Filtering Based on the Change Detection Matrix. Geoscience and Remote Sensing Letters, IEEE. 11:1826-1830.

This letter presents an adaptive filtering approach of synthetic aperture radar (SAR) image times series based on the analysis of the temporal evolution. First, change detection matrices (CDMs) containing information on changed and unchanged pixels are constructed for each spatial position over the time series by implementing coefficient of variation (CV) cross tests. Afterward, the CDM provides for each pixel in each image an adaptive spatiotemporal neighborhood, which is used to derive the filtered value. The proposed approach is illustrated on a time series of 25 ascending TerraSAR-X images acquired from November 6, 2009 to September 25, 2011 over the Chamonix-Mont-Blanc test-site, which includes different kinds of change, such as parking occupation, glacier surface evolution, etc.