Visible to the public Biblio

Filters: Keyword is Change detection  [Clear All Filters]
2020-06-12
Liu, Junfu, Chen, Keming, Xu, Guangluan, Li, Hao, Yan, Menglong, Diao, Wenhui, Sun, Xian.  2019.  Semi-Supervised Change Detection Based on Graphs with Generative Adversarial Networks. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :74—77.

In this paper, we present a semi-supervised remote sensing change detection method based on graph model with Generative Adversarial Networks (GANs). Firstly, the multi-temporal remote sensing change detection problem is converted as a problem of semi-supervised learning on graph where a majority of unlabeled nodes and a few labeled nodes are contained. Then, GANs are adopted to generate samples in a competitive manner and help improve the classification accuracy. Finally, a binary change map is produced by classifying the unlabeled nodes to a certain class with the help of both the labeled nodes and the unlabeled nodes on graph. Experimental results carried on several very high resolution remote sensing image data sets demonstrate the effectiveness of our method.

2020-04-13
Shahbaz, Ajmal, Hoang, Van-Thanh, Jo, Kang-Hyun.  2019.  Convolutional Neural Network based Foreground Segmentation for Video Surveillance Systems. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society. 1:86–89.
Convolutional Neural Networks (CNN) have shown astonishing results in the field of computer vision. This paper proposes a foreground segmentation algorithm based on CNN to tackle the practical challenges in the video surveillance system such as illumination changes, dynamic backgrounds, camouflage, and static foreground object, etc. The network is trained using the input of image sequences with respective ground-truth. The algorithm employs a CNN called VGG-16 to extract features from the input. The extracted feature maps are upsampled using a bilinear interpolation. The upsampled feature mask is passed through a sigmoid function and threshold to get the foreground mask. Binary cross entropy is used as the error function to compare the constructed foreground mask with the ground truth. The proposed algorithm was tested on two standard datasets and showed superior performance as compared to the top-ranked foreground segmentation methods.
2018-04-04
Nawaratne, R., Bandaragoda, T., Adikari, A., Alahakoon, D., Silva, D. De, Yu, X..  2017.  Incremental knowledge acquisition and self-learning for autonomous video surveillance. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. :4790–4795.

The world is witnessing a remarkable increase in the usage of video surveillance systems. Besides fulfilling an imperative security and safety purpose, it also contributes towards operations monitoring, hazard detection and facility management in industry/smart factory settings. Most existing surveillance techniques use hand-crafted features analyzed using standard machine learning pipelines for action recognition and event detection. A key shortcoming of such techniques is the inability to learn from unlabeled video streams. The entire video stream is unlabeled when the requirement is to detect irregular, unforeseen and abnormal behaviors, anomalies. Recent developments in intelligent high-level video analysis have been successful in identifying individual elements in a video frame. However, the detection of anomalies in an entire video feed requires incremental and unsupervised machine learning. This paper presents a novel approach that incorporates high-level video analysis outcomes with incremental knowledge acquisition and self-learning for autonomous video surveillance. The proposed approach is capable of detecting changes that occur over time and separating irregularities from re-occurrences, without the prerequisite of a labeled dataset. We demonstrate the proposed approach using a benchmark video dataset and the results confirm its validity and usability for autonomous video surveillance.

2015-05-06
Thu Trang Le, Atto, A.M., Trouvé, E., Nicolas, J.-M..  2014.  Adaptive Multitemporal SAR Image Filtering Based on the Change Detection Matrix. Geoscience and Remote Sensing Letters, IEEE. 11:1826-1830.

This letter presents an adaptive filtering approach of synthetic aperture radar (SAR) image times series based on the analysis of the temporal evolution. First, change detection matrices (CDMs) containing information on changed and unchanged pixels are constructed for each spatial position over the time series by implementing coefficient of variation (CV) cross tests. Afterward, the CDM provides for each pixel in each image an adaptive spatiotemporal neighborhood, which is used to derive the filtered value. The proposed approach is illustrated on a time series of 25 ascending TerraSAR-X images acquired from November 6, 2009 to September 25, 2011 over the Chamonix-Mont-Blanc test-site, which includes different kinds of change, such as parking occupation, glacier surface evolution, etc.