Biblio
Integrated circuits (ICs) are now designed and fabricated in a globalized multivendor environment making them vulnerable to malicious design changes, the insertion of hardware Trojans/malware, and intellectual property (IP) theft. Algorithmic reverse engineering of digital circuits can mitigate these concerns by enabling analysts to detect malicious hardware, verify the integrity of ICs, and detect IP violations. In this paper, we present a set of algorithms for the reverse engineering of digital circuits starting from an unstructured netlist and resulting in a high-level netlist with components such as register files, counters, adders, and subtractors. Our techniques require no manual intervention and experiments show that they determine the functionality of >45% and up to 93% of the gates in each of the test circuits that we examine. We also demonstrate that our algorithms are scalable to real designs by experimenting with a very large, highly-optimized system-on-chip (SOC) design with over 375000 combinational elements. Our inference algorithms cover 68% of the gates in this SOC. We also demonstrate that our algorithms are effective in aiding a human analyst to detect hardware Trojans in an unstructured netlist.
This brief presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces. Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define the model recursivity in the Hilbert space. For that, we exploit some properties of functional analysis and recursive computation of dot products without the need of preimaging or a training dataset. We illustrate the feasibility of the methodology in the particular case of the γ-filter, which is an infinite impulse response filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and electroencephalographic time series prediction, complex nonlinear system identification, and adaptive antenna array processing demonstrate the potential of the approach for scenarios where recursivity and nonlinearity have to be readily combined.