Visible to the public Biblio

Filters: Keyword is Grounding  [Clear All Filters]
2023-08-25
Delport, Petrus M.J, van Niekerk, Johan, Reid, Rayne.  2022.  Introduction to Information Security: From Formal Curriculum to Organisational Awareness. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :463–469.
Many organisations responded to the recent global pandemic by moving operations online. This has led to increased exposure to information security-related risks. There is thus an increased need to ensure organisational information security awareness programs are up to date and relevant to the needs of the intended target audience. The advent of online educational providers has similarly placed increased pressure on the formal educational sector to ensure course content is updated to remain relevant. Such processes of academic reflection and review should consider formal curriculum standards and guidelines in order to ensure wide relevance. This paper presents a case study of the review of an Introduction to Information Security course. This review is informed by the Information Security and Assurance knowledge area of the ACM/IEEE Computer Science 2013 curriculum standard. The paper presents lessons learned during this review process to serve as a guide for future reviews of this nature. The authors assert that these lessons learned can also be of value during the review of organisational information security awareness programs.
ISSN: 2768-0657
2022-08-12
Stegemann-Philipps, Christian, Butz, Martin V..  2021.  Learn It First: Grounding Language in Compositional Event-Predictive Encodings. 2021 IEEE International Conference on Development and Learning (ICDL). :1–6.
While language learning in infants and toddlers progresses somewhat seamlessly, in artificial systems the grounding of language in knowledge structures that are learned from sensorimotor experiences remains a hard challenge. Here we introduce LEARNA, which learns event-characterizing abstractions to resolve natural language ambiguity. LEARNA develops knowledge structures from simulated sensorimotor experiences. Given a possibly ambiguous descriptive utterance, the learned knowledge structures enable LEARNA to infer environmental scenes, and events unfolding within, which essentially constitute plausible imaginations of the utterance’s content. Similar event-predictive structures may help in developing artificial systems that can generate and comprehend descriptions of scenes and events.
2022-03-10
Tiwari, Sarthak, Bansal, Ajay.  2021.  Domain-Agnostic Context-Aware Framework for Natural Language Interface in a Task-Based Environment. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :15—20.
Smart home assistants are becoming a norm due to their ease-of-use. They employ spoken language as an interface, facilitating easy interaction with their users. Even with their obvious advantages, natural-language based interfaces are not prevalent outside the domain of home assistants. It is hard to adopt them for computer-controlled systems due to the numerous complexities involved with their implementation in varying fields. The main challenge is the grounding of natural language base terms into the underlying system's primitives. The existing systems that do use natural language interfaces are specific to one problem domain only.In this paper, a domain-agnostic framework that creates natural language interfaces for computer-controlled systems has been developed by creating a customizable mapping between the language constructs and the system primitives. The framework employs ontologies built using OWL (Web Ontology Language) for knowledge representation and machine learning models for language processing tasks.
2015-05-06
Schaefer, J..  2014.  A semantic self-management approach for service platforms. Network Operations and Management Symposium (NOMS), 2014 IEEE. :1-4.

Future personal living environments feature an increasing number of convenience-, health- and security-related applications provided by distributed services, which do not only support users but require tasks such as installation, configuration and continuous administration. These tasks are becoming tiresome, complex and error-prone. One way to escape this situation is to enable service platforms to configure and manage themselves. The approach presented here extends services with semantic descriptions to enable platform-independent autonomous service level management using model driven architecture and autonomic computing concepts. It has been implemented as a OSGi-based semantic autonomic manager, whose concept, prototypical implementation and evaluation are presented.