Biblio
Smart Internet of Things (IoT) applications will rely on advanced IoT platforms that not only provide access to IoT sensors and actuators, but also provide access to cloud services and data analytics. Future IoT platforms should thus provide connectivity and intelligence. One approach to connecting IoT devices, IoT networks to cloud networks and services is to use network federation mechanisms over the internet to create network slices across heterogeneous platforms. Network slices also need to be protected from potential external and internal threats. In this paper we describe an approach for enforcing global security policies in the federated cloud and IoT networks. Our approach allows a global security to be defined in the form of a single service manifest and enforced across all federation network segments. It relies on network function virtualisation (NFV) and service function chaining (SFC) to enforce the security policy. The approach is illustrated with two case studies: one for a user that wishes to securely access IoT devices and another in which an IoT infrastructure administrator wishes to securely access some remote cloud and data analytics services.
The Internet of Things (IOT) is a network of networks where massively large numbers of objects or things are interconnected to each other through the network. The Internet of Things brings along many new possibilities of applications to improve human comfort and quality of life. Complex systems such as the Internet of Things are difficult to manage because of the emergent behaviours that arise from the complex interactions between its constituent parts. Our key contribution in the paper is a proposed multiagent web for the Internet of Things. Corresponding data management architecture is also proposed. The multiagent architecture provides autonomic characteristics for IOT making the IOT manageable. In addition, the multiagent web allows for flexible processing on heterogeneous platforms as we leverage off web protocols such as HTTP and language independent data formats such as JSON for communications between agents. The architecture we proposed enables a scalable architecture and infrastructure for a web-scale multiagent Internet of Things.