Biblio
Managing electricity effectively also means knowing as accurately as possible when, where and how electricity is used. Detailed metering and timely allocation of consumption can help identify specific areas where energy consumption is excessive and therefore requires action and optimization. All those interested in the measurement process (distributors, sellers, wholesalers, managers, ultimately customers and new prosumer figures - producers / consumers -) have an interest in monitoring and managing energy flows more efficiently, in real time.Smart meter plays a key role in sending data containing consumer measurements to both the producer and the consumer, thanks to chain 2. It allows you to connect consumption and production, during use and the customer’s identity, allowing billing as Time-of-Use or Real-Time Pricing, and through the new two-way channel, this information is also made available to the consumer / prosumer himself, enabling new services such as awareness of energy consumption at the very moment of energy use.This is made possible by latest generation devices that "talk" with the end user, which use chain 2 and the power line for communication.However, the implementation of smart meters and related digital technologies associated with the smart grid raises various concerns, including, privacy. This paper provides a comparative perspective on privacy policies for residential energy customers, moreover, it will be possible to improve security through the blockchain for the introduction of smart contracts.
The increasing deployment of smart meters at individual households has significantly improved people's experience in electricity bill payments and energy savings. It is, however, still challenging to guarantee the accurate detection of attacked meters' behaviors as well as the effective preservation of users'privacy information. In addition, rare existing research studies jointly consider both these two aspects. In this paper, we propose a Privacy-Preserving energy Theft Detection scheme (PPTD) to address the energy theft behaviors and information privacy issues in smart grid. Specifically, we use a recursive filter based on state estimation to estimate the user's energy consumption, and detect the abnormal data. During data transmission, we use the lightweight NTRU algorithm to encrypt the user's data to achieve privacy preservation. Security analysis demonstrates that in the PPTD scheme, only authorized units can transmit/receive data, and data privacy are also preserved. The performance evaluation results illustrate that our PPTD scheme can significantly reduce the communication and computation costs, and effectively detect abnormal users.
This article is a summary description of the Cognitive Packet Network (CPN) which is an example both of a completely software defined network (SDN) and of a self-aware computer network (SAN) which has been completely implemented and used in numerous experiments. CPN is able to observe its own internal performance as well as the interfaces of the external systems that it interacts with, in order to modify its behaviour so as to adaptively achieve objectives, such as discovering services for its users, improving their Quality of Service (QoS), reduce its own energy consumption, compensate for components which fail or malfunction, detect and react to intrusions, and defend itself against attacks.