Visible to the public Biblio

Filters: Keyword is Internet botnets  [Clear All Filters]
2020-09-11
Garip, Mevlut Turker, Lin, Jonathan, Reiher, Peter, Gerla, Mario.  2019.  SHIELDNET: An Adaptive Detection Mechanism against Vehicular Botnets in VANETs. 2019 IEEE Vehicular Networking Conference (VNC). :1—7.
Vehicular ad hoc networks (VANETs) are designed to provide traffic safety by enabling vehicles to broadcast information-such as speed, location and heading-through inter-vehicular communications to proactively avoid collisions. However, the attacks targeting these networks might overshadow their advantages if not protected against. One powerful threat against VANETs is vehicular botnets. In our earlier work, we demonstrated several vehicular botnet attacks that can have damaging impacts on the security and privacy of VANETs. In this paper, we present SHIELDNET, the first detection mechanism against vehicular botnets. Similar to the detection approaches against Internet botnets, we target the vehicular botnet communication and use several machine learning techniques to identify vehicular bots. We show via simulation that SHIELDNET can identify 77 percent of the vehicular bots. We propose several improvements on the VANET standards and show that their existing vulnerabilities make an effective defense against vehicular botnets infeasible.
2015-05-06
Zhuo Lu, Wenye Wang, Wang, C..  2014.  How can botnets cause storms? Understanding the evolution and impact of mobile botnets INFOCOM, 2014 Proceedings IEEE. :1501-1509.

A botnet in mobile networks is a collection of compromised nodes due to mobile malware, which are able to perform coordinated attacks. Different from Internet botnets, mobile botnets do not need to propagate using centralized infrastructures, but can keep compromising vulnerable nodes in close proximity and evolving organically via data forwarding. Such a distributed mechanism relies heavily on node mobility as well as wireless links, therefore breaks down the underlying premise in existing epidemic modeling for Internet botnets. In this paper, we adopt a stochastic approach to study the evolution and impact of mobile botnets. We find that node mobility can be a trigger to botnet propagation storms: the average size (i.e., number of compromised nodes) of a botnet increases quadratically over time if the mobility range that each node can reach exceeds a threshold; otherwise, the botnet can only contaminate a limited number of nodes with average size always bounded above. This also reveals that mobile botnets can propagate at the fastest rate of quadratic growth in size, which is substantially slower than the exponential growth of Internet botnets. To measure the denial-of-service impact of a mobile botnet, we define a new metric, called last chipper time, which is the last time that service requests, even partially, can still be processed on time as the botnet keeps propagating and launching attacks. The last chipper time is identified to decrease at most on the order of 1/√B, where B is the network bandwidth. This result reveals that although increasing network bandwidth can help with mobile services; at the same time, it can indeed escalate the risk for services being disrupted by mobile botnets.