Biblio
The Maude-NRL Protocol Analyzer (Maude-NPA) is a tool for reasoning about the security of cryptographic protocols in which the cryptosystems satisfy different equational properties. It tries to find secrecy or authentication attacks by searching backwards from an insecure attack state pattern that may contain logical variables, in such a way that logical variables become properly instantiated in order to find an initial state. The execution mechanism for this logical reachability is narrowing modulo an equational theory. Although Maude-NPA also possesses a forwards semantics naturally derivable from the backwards semantics, it is not suitable for state space exploration or protocol simulation. In this paper we define an executable forwards semantics for Maude-NPA, instead of its usual backwards one, and restrict it to the case of concrete states, that is, to terms without logical variables. This case corresponds to standard rewriting modulo an equational theory. We prove soundness and completeness of the backwards narrowing-based semantics with respect to the rewriting-based forwards semantics. We show its effectiveness as an analysis method that complements the backwards analysis with new prototyping, simulation, and explicit-state model checking features by providing some experimental results.
Security features are often hardwired into software applications, making it difficult to adapt security responses to reflect changes in runtime context and new attacks. In prior work, we proposed the idea of architecture-based self-protection as a way of separating adaptation logic from application logic and providing a global perspective for reasoning about security adaptations in the context of other business goals. In this paper, we present an approach, based on this idea, for combating denial-of-service (DoS) attacks. Our approach allows DoS-related tactics to be composed into more sophisticated mitigation strategies that encapsulate possible responses to a security problem. Then, utility-based reasoning can be used to consider different business contexts and qualities. We describe how this approach forms the underpinnings of a scientific approach to self-protection, allowing us to reason about how to make the best choice of mitigation at runtime. Moreover, we also show how formal analysis can be used to determine whether the mitigations cover the range of conditions the system is likely to encounter, and the effect of mitigations on other quality attributes of the system. We evaluate the approach using the Rainbow self-adaptive framework and show how Rainbow chooses DoS mitigation tactics that are sensitive to different business contexts.
The Symposium and Bootcamp on the Science of Security (HotSoS), is a research event centered on the Science of Security (SoS). Following a successful invitational SoS Community Meeting in December 2012, HotSoS 2014 was the first open research event in what we expect will be a continuing series of such events. The key motivation behind developing a Science of Security is to address the fundamental problems of cybersecurity in a principled manner. Security has been intensively studied, but a lot of previous research emphasizes the engineering of specific solutions without first developing the scientific understanding of the problem domain. All too often, security research conveys the flavor of identifying specific threats and removing them in an apparently ad hoc manner. The motivation behind the nascent Science of Security is to understand how computing systems are architected, built, used, and maintained with a view to understanding and addressing security challenges systematically across their life cycle. In particular, two features distinguish the Science of Security from previous research programs on cybersecurity. Scope. The Science of Security considers not just computational artifacts but also incorporates the human, social, and organizational aspects of computing within its purview. Approach. The Science of Security takes a decidedly scientific approach, based on the understanding of empirical evaluation and theoretical foundations as developed in the natural and social sciences, but adapted as appropriate for the "artificial science" (paraphrasing Herb Simon's term) that is computing.
- « first
- ‹ previous
- 1
- 2
- 3