Visible to the public Biblio

Filters: Keyword is network bandwidth  [Clear All Filters]
2020-05-15
Ravikumar, C.P., Swamy, S. Kendaganna, Uma, B.V..  2019.  A hierarchical approach to self-test, fault-tolerance and routing security in a Network-on-Chip. 2019 IEEE International Test Conference India (ITC India). :1—6.
Since the performance of bus interconnects does not scale with the number of processors connected to the bus, chip multiprocessors make use of on-chip networks that implement packet switching and virtual channel flow control to efficiently transport data. In this paper, we consider the test and fault-tolerance aspects of such a network-on-chip (NoC). Past work in this area has addressed the communication efficiency and deadlock-free properties in NoC, but when routing externally received data, aspects of security must be addressed. A malicious denial-of-service attack or a power virus can be launched by a malicious external agent. We propose a two-tier solution to this problem, where a local self-test manager in each processing element runs test algorithms to detect faults in local processing element and its associated physical and virtual channels. At the global level, the health of the NoC is tested using a sorting-based algorithm proposed in this paper. Similarly, we propose to handle fault-tolerance and security concerns in routing at two levels. At the local level, each node is capable of fault-tolerant routing by deflecting packets to an alternate path; when doing so, since a chance of deadlock may be created, the local router must be capable of guestimating a deadlock situation, switch to packet-switching instead of flit-switching and attempt to reroute the packet. At the global level, a routing agent plays the role of gathering fault data and provide the fault-information to nodes that seek this information periodically. Similarly, the agent is capable of detecting malformed packets coming from an external source and prevent injecting such packets into the network, thereby conserving the network bandwidth. The agent also attempts to guess attempts at denial-of-service attacks and power viruses and will reject packets. Use of a two-tier approach helps in keeping the IP modular and reduces their complexity, thereby making them easier to verify.
2020-03-04
Shahsavari, Yahya, Zhang, Kaiwen, Talhi, Chamseddine.  2019.  A Theoretical Model for Fork Analysis in the Bitcoin Network. 2019 IEEE International Conference on Blockchain (Blockchain). :237–244.

Blockchain networks which employ Proof-of-Work in their consensus mechanism may face inconsistencies in the form of forks. These forks are usually resolved through the application of block selection rules (such as the Nakamoto consensus). In this paper, we investigate the cause and length of forks for the Bitcoin network. We develop theoretical formulas which model the Bitcoin consensus and network protocols, based on an Erdös-Rényi random graph construction of the overlay network of peers. Our theoretical model addresses the effect of key parameters on the fork occurrence probability, such as block propagation delay, network bandwidth, and block size. We also leverage this model to estimate the weight of fork branches. Our model is implemented using the network simulator OMNET++ and validated by historical Bitcoin data. We show that under current conditions, Bitcoin will not benefit from increasing the number of connections per node.

2018-02-06
Salman, O., Kayssi, A., Chehab, A., Elhajj, I..  2017.  Multi-Level Security for the 5G/IoT Ubiquitous Network. 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC). :188–193.

5G, the fifth generation of mobile communication networks, is considered as one of the main IoT enablers. Connecting billions of things, 5G/IoT will be dealing with trillions of GBytes of data. Securing such large amounts of data is a very challenging task. Collected data varies from simple temperature measurements to more critical transaction data. Thus, applying uniform security measures is a waste of resources (processing, memory, and network bandwidth). Alternatively, a multi-level security model needs to be applied according to the varying requirements. In this paper, we present a multi-level security scheme (BLP) applied originally in the information security domain. We review its application in the network domain, and propose a modified version of BLP for the 5G/IoT case. The proposed model is proven to be secure and compliant with the model rules.

2017-02-27
Li-xiong, Z., Xiao-lin, X., Jia, L., Lu, Z., Xuan-chen, P., Zhi-yuan, M., Li-hong, Z..  2015.  Malicious URL prediction based on community detection. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–7.

Traditional Anti-virus technology is primarily based on static analysis and dynamic monitoring. However, both technologies are heavily depended on application files, which increase the risk of being attacked, wasting of time and network bandwidth. In this study, we propose a new graph-based method, through which we can preliminary detect malicious URL without application file. First, the relationship between URLs can be found through the relationship between people and URLs. Then the association rules can be mined with confidence of each frequent URLs. Secondly, the networks of URLs was built through the association rules. When the networks of URLs were finished, we clustered the date with modularity to detect communities and every community represents different types of URLs. We suppose that a URL has association with one community, then the URL is malicious probably. In our experiments, we successfully captured 82 % of malicious samples, getting a higher capture than using traditional methods.

2015-05-06
Zhuo Lu, Wenye Wang, Wang, C..  2014.  How can botnets cause storms? Understanding the evolution and impact of mobile botnets INFOCOM, 2014 Proceedings IEEE. :1501-1509.

A botnet in mobile networks is a collection of compromised nodes due to mobile malware, which are able to perform coordinated attacks. Different from Internet botnets, mobile botnets do not need to propagate using centralized infrastructures, but can keep compromising vulnerable nodes in close proximity and evolving organically via data forwarding. Such a distributed mechanism relies heavily on node mobility as well as wireless links, therefore breaks down the underlying premise in existing epidemic modeling for Internet botnets. In this paper, we adopt a stochastic approach to study the evolution and impact of mobile botnets. We find that node mobility can be a trigger to botnet propagation storms: the average size (i.e., number of compromised nodes) of a botnet increases quadratically over time if the mobility range that each node can reach exceeds a threshold; otherwise, the botnet can only contaminate a limited number of nodes with average size always bounded above. This also reveals that mobile botnets can propagate at the fastest rate of quadratic growth in size, which is substantially slower than the exponential growth of Internet botnets. To measure the denial-of-service impact of a mobile botnet, we define a new metric, called last chipper time, which is the last time that service requests, even partially, can still be processed on time as the botnet keeps propagating and launching attacks. The last chipper time is identified to decrease at most on the order of 1/√B, where B is the network bandwidth. This result reveals that although increasing network bandwidth can help with mobile services; at the same time, it can indeed escalate the risk for services being disrupted by mobile botnets.