Biblio
Security practitioners use the attack surface of software systems to prioritize areas of systems to test and analyze. To date, approaches for predicting which code artifacts are vulnerable have utilized a binary classification of code as vulnerable or not vulnerable. To better understand the strengths and weaknesses of vulnerability prediction approaches, vulnerability datasets with classification and severity data are needed. The goal of this paper is to help researchers and practitioners make security effort prioritization decisions by evaluating which classifications and severities of vulnerabilities are on an attack surface approximated using crash dump stack traces. In this work, we use crash dump stack traces to approximate the attack surface of Mozilla Firefox. We then generate a dataset of 271 vulnerable files in Firefox, classified using the Common Weakness Enumeration (CWE) system. We use these files as an oracle for the evaluation of the attack surface generated using crash data. In the Firefox vulnerability dataset, 14 different classifications of vulnerabilities appeared at least once. In our study, 85.3%
of vulnerable files were on the attack surface generated using crash data. We found no difference between the severity of vulnerabilities found on the attack surface generated using crash data and vulnerabilities not occurring on the attack surface. Additionally, we discuss lessons learned during the development of this vulnerability dataset.
Presented at the Illinois Information Trust Institute Assured Cloud Computing Weekly Research Seminar, September 28, 2016.
Today's cyber-physical systems (CPSs) can have very different characteristics in terms of control algorithms, configurations, underlying infrastructure, communication protocols, and real-time requirements. Despite these variations, they all face the threat of malicious attacks that exploit the vulnerabilities in the cyber domain as footholds to introduce safety violations in the physical processes. In this paper, we focus on a class of attacks that impact the physical processes without introducing anomalies in the cyber domain. We present the common challenges in detecting this type of attacks in the contexts of two very different CPSs (i.e., power grids and surgical robots). In addition, we present a general principle for detecting such cyber-physical attacks, which combine the knowledge of both cyber and physical domains to estimate the adverse consequences of malicious activities in a timely manner.
The successful operations of modern power grids are highly dependent on a reliable and ecient underlying communication network. Researchers and utilities have started to explore the opportunities and challenges of applying the emerging software-de ned networking (SDN) technology to enhance eciency and resilience of the Smart Grid. This trend calls for a simulation-based platform that provides sufcient exibility and controllability for evaluating network application designs, and facilitating the transitions from inhouse research ideas to real productions. In this paper, we present DSSnet, a hybrid testing platform that combines a power distribution system simulator with an SDN emulator to support high delity analysis of communication network applications and their impacts on the power systems. Our contributions lay in the design of a virtual time system with the tight controllability on the execution of the emulation system, i.e., pausing and resuming any speci ed container processes in the perception of their own virtual clocks, with little overhead scaling to 500 emulated hosts with an average of 70 ms overhead; and also lay in the ecient synchronization of the two sub-systems based on the virtual time. We evaluate the system performance of DSSnet, and also demonstrate the usability through a case study by evaluating a load shifting algorithm.
This paper is a proposal for a poster. In it we describe a medical device security approach that researchers at Fraunhofer used to analyze different kinds of medical devices for security vulnerabilities. These medical devices were provided to Fraunhofer by a medical device manufacturer whose name we cannot disclose due to non-disclosure agreements.
According to a 2011 survey in healthcare, the most commonly reported breaches of protected health information involved employees snooping into medical records of friends and relatives. Logging mechanisms can provide a means for forensic analysis of user activity in software systems by proving that a user performed certain actions in the system. However, logging mechanisms often inconsistently capture user interactions with sensitive data, creating gaps in traces of user activity. Explicit design principles and systematic testing of logging mechanisms within the software development lifecycle may help strengthen the overall security of software. The objective of this research is to observe the current state of logging mechanisms by performing an exploratory case study in which we systematically evaluate logging mechanisms by supplementing the expected results of existing functional black-box test cases to include log output. We perform an exploratory case study of four open-source electronic health record (EHR) logging mechanisms: OpenEMR, OSCAR, Tolven eCHR, and WorldVistA. We supplement the expected results of 30 United States government-sanctioned test cases to include log output to track access of sensitive data. We then execute the test cases on each EHR system. Six of the 30 (20%) test cases failed on all four EHR systems because user interactions with sensitive data are not logged. We find that viewing protected data is often not logged by default, allowing unauthorized views of data to go undetected. Based on our results, we propose a set of principles that developers should consider when developing logging mechanisms to ensure the ability to capture adequate traces of user activity.