Visible to the public Biblio

Filters: Keyword is external Internet  [Clear All Filters]
2020-03-02
Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Countermeasure of Lightweight Physical Unclonable Function Against Side-Channel Attack. 2019 Cybersecurity and Cyberforensics Conference (CCC). :30–34.

In industrial internet of things, various devices are connected to external internet. For the connected devices, the authentication is very important in the viewpoint of security; therefore, physical unclonable functions (PUFs) have attracted attention as authentication techniques. On the other hand, the risk of modeling attacks on PUFs, which clone the function of PUFs mathematically, is pointed out. Therefore, a resistant-PUF such as a lightweight PUF has been proposed. However, new analytical methods (side-channel attacks: SCAs), which use side-channel information such as power or electromagnetic waves, have been proposed. The countermeasure method has also been proposed; however, an evaluation using actual devices has not been studied. Since PUFs use small production variations, the implementation evaluation is very important. Therefore, this study proposes a SCA countermeasure of the lightweight PUF. The proposed method is based on the previous studies, and maintains power consumption consistency during the generation of response. In experiments using a field programmable gate array, the measured power consumption was constant regardless of output values of the PUF could be confirmed. Then, experimental results showed that the predicted rate of the response was about 50 %, and the proposed method had a tamper resistance against SCAs.

2015-05-06
Carter, K.M., Idika, N., Streilein, W.W..  2014.  Probabilistic Threat Propagation for Network Security. Information Forensics and Security, IEEE Transactions on. 9:1394-1405.

Techniques for network security analysis have historically focused on the actions of the network hosts. Outside of forensic analysis, little has been done to detect or predict malicious or infected nodes strictly based on their association with other known malicious nodes. This methodology is highly prevalent in the graph analytics world, however, and is referred to as community detection. In this paper, we present a method for detecting malicious and infected nodes on both monitored networks and the external Internet. We leverage prior community detection and graphical modeling work by propagating threat probabilities across network nodes, given an initial set of known malicious nodes. We enhance prior work by employing constraints that remove the adverse effect of cyclic propagation that is a byproduct of current methods. We demonstrate the effectiveness of probabilistic threat propagation on the tasks of detecting botnets and malicious web destinations.