Biblio
The domain name system (DNS) offers an ideal distributed database for big data mining related to different cyber security questions. Besides infrastructural problems, scalability issues, and security challenges related to the protocol itself, information from DNS is often required also for more nuanced cyber security questions. Against this backdrop, this paper discusses the fundamental characteristics of DNS in relation to cyber security and different research prototypes designed for passive but continuous DNS-based monitoring of domains and addresses. With this discussion, the paper also illustrates a few general software design aspects.
Techniques for network security analysis have historically focused on the actions of the network hosts. Outside of forensic analysis, little has been done to detect or predict malicious or infected nodes strictly based on their association with other known malicious nodes. This methodology is highly prevalent in the graph analytics world, however, and is referred to as community detection. In this paper, we present a method for detecting malicious and infected nodes on both monitored networks and the external Internet. We leverage prior community detection and graphical modeling work by propagating threat probabilities across network nodes, given an initial set of known malicious nodes. We enhance prior work by employing constraints that remove the adverse effect of cyclic propagation that is a byproduct of current methods. We demonstrate the effectiveness of probabilistic threat propagation on the tasks of detecting botnets and malicious web destinations.