Biblio
The government in the era of big data requires safer infrastructure, information storage and data application. As a result, security threats will be the bottleneck for e-government development. Based on the e-government hierarchy model, this thesis focuses on such information security threats as human effects, network technology defects and management deficiency facing the e-government system in the era of big data. On this basis, three solutions are put forward to improve e-government information security system. Firstly, enhance information security awareness and improve network technology of information management departments in the government; secondly, conduct proper information encryption by ensuring information confidentiality and identity authentication; thirdly, implement strict information management through isolation between intranet and extranet and united planning of e-government information management.
The Domain Name System (DNS) is widely seen as a vital protocol of the modern Internet. For example, popular services like load balancers and Content Delivery Networks heavily rely on DNS. Because of its important role, DNS is also a desirable target for malicious activities such as spamming, phishing, and botnets. To protect networks against these attacks, a number of DNS-based security approaches have been proposed. The key insight of our study is to measure the effectiveness of security approaches that rely on DNS in large-scale networks. For this purpose, we answer the following questions, How often is DNS used? Are most of the Internet flows established after contacting DNS? In this study, we collected data from the University of Auckland campus network with more than 33,000 Internet users and processed it to find out how DNS is being used. Moreover, we studied the flows that were established with and without contacting DNS. Our results show that less than 5 percent of the observed flows use DNS. Therefore, we argue that those security approaches that solely depend on DNS are not sufficient to protect large-scale networks.