Visible to the public Biblio

Filters: Keyword is network attack detection  [Clear All Filters]
2021-11-29
Wang, Yixuan, Li, Yujun, Chen, Xiang, Luo, Yeni.  2020.  Implementing Network Attack Detection with a Novel NSSA Model Based on Knowledge Graphs. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1727–1732.
With the rapid development of networks, cyberspace security is facing increasingly severe challenges. Traditional alert aggregation process and alert correlation analysis process are susceptible to a large amount of redundancy and false alerts. To tackle the challenge, this paper proposes a network security situational awareness model KG-NSSA (Knowledge-Graph-based NSSA) based on knowledge graphs. This model provides an asset-based network security knowledge graph construction scheme. Based on the network security knowledge graph, a solution is provided for the classic problem in the field of network security situational awareness - network attack scenario discovery. The asset-based network security knowledge graph combines the asset information of the monitored network and fully considers the monitoring of network traffic. The attack scenario discovery according to the KG-NSSA model is to complete attack discovery and attack association through attribute graph mining and similarity calculation, which can effectively reflect specific network attack behaviors and mining attack scenarios. The effectiveness of the proposed method is verified on the MIT DARPA2000 data set. Our work provides a new approach for network security situational awareness.
2020-05-04
Su, Liya, Yao, Yepeng, Lu, Zhigang, Liu, Baoxu.  2019.  Understanding the Influence of Graph Kernels on Deep Learning Architecture: A Case Study of Flow-Based Network Attack Detection. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :312–318.
Flow-based network attack detection technology is able to identify many threats in network traffic. Existing techniques have several drawbacks: i) rule-based approaches are vulnerable because it needs all the signatures defined for the possible attacks, ii) anomaly-based approaches are not efficient because it is easy to find ways to launch attacks that bypass detection, and iii) both rule-based and anomaly-based approaches heavily rely on domain knowledge of networked system and cyber security. The major challenge to existing methods is to understand novel attack scenarios and design a model to detect novel and more serious attacks. In this paper, we investigate network attacks and unveil the key activities and the relationships between these activities. For that reason, we propose methods to understand the network security practices using theoretic concepts such as graph kernels. In addition, we integrate graph kernels over deep learning architecture to exploit the relationship expressiveness among network flows and combine ability of deep neural networks (DNNs) with deep architectures to learn hidden representations, based on the communication representation graph of each network flow in a specific time interval, then the flow-based network attack detection can be done effectively by measuring the similarity between the graphs to two flows. The proposed study provides the effectiveness to obtain insights about network attacks and detect network attacks. Using two real-world datasets which contain several new types of network attacks, we achieve significant improvements in accuracies over existing network attack detection tasks.
2019-07-01
Perez, R. Lopez, Adamsky, F., Soua, R., Engel, T..  2018.  Machine Learning for Reliable Network Attack Detection in SCADA Systems. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :633–638.

Critical Infrastructures (CIs) use Supervisory Control And Data Acquisition (SCADA) systems for remote control and monitoring. Sophisticated security measures are needed to address malicious intrusions, which are steadily increasing in number and variety due to the massive spread of connectivity and standardisation of open SCADA protocols. Traditional Intrusion Detection Systems (IDSs) cannot detect attacks that are not already present in their databases. Therefore, in this paper, we assess Machine Learning (ML) for intrusion detection in SCADA systems using a real data set collected from a gas pipeline system and provided by the Mississippi State University (MSU). The contribution of this paper is two-fold: 1) The evaluation of four techniques for missing data estimation and two techniques for data normalization, 2) The performances of Support Vector Machine (SVM), and Random Forest (RF) are assessed in terms of accuracy, precision, recall and F1score for intrusion detection. Two cases are differentiated: binary and categorical classifications. Our experiments reveal that RF detect intrusions effectively, with an F1score of respectively \textbackslashtextgreater 99%.

2018-02-14
Zhao, J., Shetty, S., Pan, J. W..  2017.  Feature-based transfer learning for network security. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :17–22.

New and unseen network attacks pose a great threat to the signature-based detection systems. Consequently, machine learning-based approaches are designed to detect attacks, which rely on features extracted from network data. The problem is caused by different distribution of features in the training and testing datasets, which affects the performance of the learned models. Moreover, generating labeled datasets is very time-consuming and expensive, which undercuts the effectiveness of supervised learning approaches. In this paper, we propose using transfer learning to detect previously unseen attacks. The main idea is to learn the optimized representation to be invariant to the changes of attack behaviors from labeled training sets and non-labeled testing sets, which contain different types of attacks and feed the representation to a supervised classifier. To the best of our knowledge, this is the first effort to use a feature-based transfer learning technique to detect unseen variants of network attacks. Furthermore, this technique can be used with any common base classifier. We evaluated the technique on publicly available datasets, and the results demonstrate the effectiveness of transfer learning to detect new network attacks.

2015-05-06
Khobragade, P.K., Malik, L.G..  2014.  Data Generation and Analysis for Digital Forensic Application Using Data Mining. Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on. :458-462.

In the cyber crime huge log data, transactional data occurs which tends to plenty of data for storage and analyze them. It is difficult for forensic investigators to play plenty of time to find out clue and analyze those data. In network forensic analysis involves network traces and detection of attacks. The trace involves an Intrusion Detection System and firewall logs, logs generated by network services and applications, packet captures by sniffers. In network lots of data is generated in every event of action, so it is difficult for forensic investigators to find out clue and analyzing those data. In network forensics is deals with analysis, monitoring, capturing, recording, and analysis of network traffic for detecting intrusions and investigating them. This paper focuses on data collection from the cyber system and web browser. The FTK 4.0 is discussing for memory forensic analysis and remote system forensic which is to be used as evidence for aiding investigation.