Visible to the public Biblio

Filters: Keyword is advanced persistent threat detection  [Clear All Filters]
2021-01-22
Ayoade, G., Akbar, K. A., Sahoo, P., Gao, Y., Agarwal, A., Jee, K., Khan, L., Singhal, A..  2020.  Evolving Advanced Persistent Threat Detection using Provenance Graph and Metric Learning. 2020 IEEE Conference on Communications and Network Security (CNS). :1—9.

Advanced persistent threats (APT) have increased in recent times as a result of the rise in interest by nation-states and sophisticated corporations to obtain high profile information. Typically, APT attacks are more challenging to detect since they leverage zero-day attacks and common benign tools. Furthermore, these attack campaigns are often prolonged to evade detection. We leverage an approach that uses a provenance graph to obtain execution traces of host nodes in order to detect anomalous behavior. By using the provenance graph, we extract features that are then used to train an online adaptive metric learning. Online metric learning is a deep learning method that learns a function to minimize the separation between similar classes and maximizes the separation between dis-similar instances. We compare our approach with baseline models and we show our method outperforms the baseline models by increasing detection accuracy on average by 11.3 % and increases True positive rate (TPR) on average by 18.3 %.

2020-05-18
Thejaswini, S, Indupriya, C.  2019.  Big Data Security Issues and Natural Language Processing. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :1307–1312.
Whenever we talk about big data, the concern is always about the security of the data. In recent days the most heard about technology is the Natural Language Processing. This new and trending technology helps in solving the ever ending security problems which are not completely solved using big data. Starting with the big data security issues, this paper deals with addressing the topics related to cyber security and information security using the Natural Language Processing technology. Including the well-known cyber-attacks such as phishing identification and spam detection, this paper also addresses issues on information assurance and security such as detection of Advanced Persistent Threat (APT) in DNS and vulnerability analysis. The goal of this paper is to provide the overview of how natural language processing can be used to address cyber security issues.
2017-02-14
S. Chandran, Hrudya P, P. Poornachandran.  2015.  "An efficient classification model for detecting advanced persistent threat". 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). :2001-2009.

Among most of the cyber attacks that occured, the most drastic are advanced persistent threats. APTs are differ from other attacks as they have multiple phases, often silent for long period of time and launched by adamant, well-funded opponents. These targeted attacks mainly concentrated on government agencies and organizations in industries, as are those involved in international trade and having sensitive data. APTs escape from detection by antivirus solutions, intrusion detection and intrusion prevention systems and firewalls. In this paper we proposes a classification model having 99.8% accuracy, for the detection of APT.

2015-05-06
Sung-Hwan Ahn, Nam-Uk Kim, Tai-Myoung Chung.  2014.  Big data analysis system concept for detecting unknown attacks. Advanced Communication Technology (ICACT), 2014 16th International Conference on. :269-272.

Recently, threat of previously unknown cyber-attacks are increasing because existing security systems are not able to detect them. Past cyber-attacks had simple purposes of leaking personal information by attacking the PC or destroying the system. However, the goal of recent hacking attacks has changed from leaking information and destruction of services to attacking large-scale systems such as critical infrastructures and state agencies. In the other words, existing defence technologies to counter these attacks are based on pattern matching methods which are very limited. Because of this fact, in the event of new and previously unknown attacks, detection rate becomes very low and false negative increases. To defend against these unknown attacks, which cannot be detected with existing technology, we propose a new model based on big data analysis techniques that can extract information from a variety of sources to detect future attacks. We expect our model to be the basis of the future Advanced Persistent Threat(APT) detection and prevention system implementations.