Visible to the public Biblio

Filters: Keyword is prevention system  [Clear All Filters]
2021-03-09
Lee, T., Chang, L., Syu, C..  2020.  Deep Learning Enabled Intrusion Detection and Prevention System over SDN Networks. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1—6.

The Software Defined Network (SDN) provides higher programmable functionality for network configuration and management dynamically. Moreover, SDN introduces a centralized management approach by dividing the network into control and data planes. In this paper, we introduce a deep learning enabled intrusion detection and prevention system (DL-IDPS) to prevent secure shell (SSH) brute-force attacks and distributed denial-of-service (DDoS) attacks in SDN. The packet length in SDN switch has been collected as a sequence for deep learning models to identify anomalous and malicious packets. Four deep learning models, including Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) and Stacked Auto-encoder (SAE), are implemented and compared for the proposed DL-IDPS. The experimental results show that the proposed MLP based DL-IDPS has the highest accuracy which can achieve nearly 99% and 100% accuracy to prevent SSH Brute-force and DDoS attacks, respectively.

2020-05-11
Chandre, Pankaj Ramchandra, Mahalle, Parikshit Narendra, Shinde, Gitanjali Rahul.  2018.  Machine Learning Based Novel Approach for Intrusion Detection and Prevention System: A Tool Based Verification. 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). :135–140.
Now a day, Wireless Sensor Networks are widely used in military applications by its applications, it is extended to healthcare, industrial environments and many more. As we know that, there are some unique features of WSNs such as limited power supply, minimum bandwidth and limited energy. So, to secure traditional network, multiple techniques are available, but we can't use same techniques to secure WSNs. So to increase the overall security of WSNs, we required new ideas as well as new approaches. In general, intrusion prevention is the primary issue in WSNs and intrusion detection already reached to saturation. Thus, we need an efficient solution for proactive intrusion prevention towards WSNs. Thus, formal validation of protocols in WSN is an essential area of research. This research paper aims to formally verify as well as model some protocol used for intrusion detection using AVISPA tool and HLPSL language. In this research paper, the results of authentication and DoS attacks were detected is presented, but there is a need to prevent such type of attacks. In this research paper, a system is proposed in order to avoid intrusion using machine learning for the wireless sensor network. So, the proposed system will be used for intrusion prevention in a wireless sensor network.
2015-05-06
Sung-Hwan Ahn, Nam-Uk Kim, Tai-Myoung Chung.  2014.  Big data analysis system concept for detecting unknown attacks. Advanced Communication Technology (ICACT), 2014 16th International Conference on. :269-272.

Recently, threat of previously unknown cyber-attacks are increasing because existing security systems are not able to detect them. Past cyber-attacks had simple purposes of leaking personal information by attacking the PC or destroying the system. However, the goal of recent hacking attacks has changed from leaking information and destruction of services to attacking large-scale systems such as critical infrastructures and state agencies. In the other words, existing defence technologies to counter these attacks are based on pattern matching methods which are very limited. Because of this fact, in the event of new and previously unknown attacks, detection rate becomes very low and false negative increases. To defend against these unknown attacks, which cannot be detected with existing technology, we propose a new model based on big data analysis techniques that can extract information from a variety of sources to detect future attacks. We expect our model to be the basis of the future Advanced Persistent Threat(APT) detection and prevention system implementations.