Visible to the public Biblio

Filters: Keyword is SHA-1  [Clear All Filters]
2020-09-04
Laatansa, Saputra, Ragil, Noranita, Beta.  2019.  Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash. 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS). :1—4.
Password data in a system usually stored in hash. Various human-caused negligence and system vulnerability can make those data fall in the hand of those who isn't entitled to or even those who have malicious purpose. Attacks which could be done on the hashed password data using GPGPU-based machine are for example: brute-force, dictionary, mask-attack, and word-list. This research explains about effectivity of brute-force and dictionary attack which done on SHA-l hashed password using GPGPU-based machine. Result is showing that brute-force effectively crack more password which has lower set of character, with over 11% of 7 or less characters passwords vs mere 3 % in the dictionary attack counterpart. Whereas dictionary attack is more effective on cracking password which has unsecure character pattern with 5,053 passwords vs 491 on best brute-force attack scenario. Usage of combined attack method (brute-force + dictionary) gives more balanced approach in terms of cracking whether the password is long or secure patterned string.
2020-06-12
Latif, M. Kamran, Jacinto, H S., Daoud, Luka, Rafla, Nader.  2018.  Optimization of a Quantum-Secure Sponge-Based Hash Message Authentication Protocol. 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). :984—987.

Hash message authentication is a fundamental building block of many networking security protocols such as SSL, TLS, FTP, and even HTTPS. The sponge-based SHA-3 hashing algorithm is the most recently developed hashing function as a result of a NIST competition to find a new hashing standard after SHA-1 and SHA-2 were found to have collisions, and thus were considered broken. We used Xilinx High-Level Synthesis to develop an optimized and pipelined version of the post-quantum-secure SHA-3 hash message authentication code (HMAC) which is capable of computing a HMAC every 280 clock-cycles with an overall throughput of 604 Mbps. We cover the general security of sponge functions in both a classical and quantum computing standpoint for hash functions, and offer a general architecture for HMAC computation when sponge functions are used.

De Guzman, Froilan E., Gerardo, Bobby D., Medina, Ruji P..  2018.  Enhanced Secure Hash Algorithm-512 based on Quadratic Function. 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM). :1—6.

This paper attempts to introduce the enhanced SHA-1 algorithm which features a simple quadratic function that will control the selection of primitive function and constant used per round of SHA-1. The message digest for this enhancement is designed for 512 hashed value that will answer the possible occurrence of hash collisions. Moreover, this features the architecture of 8 registers of A, B, C, D, E, F, G, and H which consists of 64 bits out of the total 512 bits. The testing of frequency for Q15 and Q0 will prove that the selection of primitive function and the constant used are not equally distributed. Implementation of extended bits for hash message will provide additional resources for dictionary attacks and the extension of its hash outputs will provide an extended time for providing a permutation of 512 hash bits.

2020-06-08
Al-Odat, Zeyad, Abbas, Assad, Khan, Samee U..  2019.  Randomness Analyses of the Secure Hash Algorithms, SHA-1, SHA-2 and Modified SHA. 2019 International Conference on Frontiers of Information Technology (FIT). :316–3165.
This paper introduces a security analysis scheme for the most famous secure hash algorithms SHA-1 and SHA-2. Both algorithms follow Merkle Damgård structure to compute the corresponding hash function. The randomness of the output hash reflects the strength and security of the generated hash. Therefore, the randomness of the internal rounds of the SHA-1 and SHA-2 hash functions is analyzed using Bayesian and odd ratio tests. Moreover, a proper replacement for both algorithms is proposed, which produces a hash output with more randomness level. The experiments were conducted using a high performance computing testbed and CUDA parallel computing platform.
De Guzman, Froilan E., Gerardo, Bobby D., Medina, Ruji P..  2019.  Implementation of Enhanced Secure Hash Algorithm Towards a Secured Web Portal. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :189–192.
In this paper, the application of the enhanced secure hash algorithm-512 is implemented on web applications specifically in password hashing. In addition to the enhancement of hash function, hill cipher is included for the salt generation to increase the complexity of generating hash tables that may be used as an attack on the algorithm. The testing of same passwords saved on the database is used to create hash collisions that will result to salt generation to produce a new hash message. The matrix encryption key provides five matrices to be selected upon based on the length of concatenated username, password, and concatenated characters from the username. In this process, same password will result to a different hash message that will to make it more secured from future attacks.
2017-12-27
Slimane, N. B., Bouallegue, K., Machhout, M..  2017.  A novel image encryption scheme using chaos, hyper-chaos systems and the secure Hash algorithm SHA-1. 2017 International Conference on Control, Automation and Diagnosis (ICCAD). :141–145.

In this paper, we introduce a fast, secure and robust scheme for digital image encryption using chaotic system of Lorenz, 4D hyper-chaotic system and the Secure Hash Algorithm SHA-1. The encryption process consists of three layers: sub-vectors confusion and two-diffusion process. In the first layer we divide the plainimage into sub-vectors then, the position of each one is changed using the chaotic index sequence generated with chaotic attractor of Lorenz, while the diffusion layers use hyper-chaotic system to modify the values of pixels using an XOR operation. The results of security analysis such as statistical tests, differential attacks, key space, key sensitivity, entropy information and the running time are illustrated and compared to recent encryption schemes where the highest security level and speed are improved.

2015-05-06
Kishore, N., Kapoor, B..  2014.  An efficient parallel algorithm for hash computation in security and forensics applications. Advance Computing Conference (IACC), 2014 IEEE International. :873-877.

Hashing algorithms are used extensively in information security and digital forensics applications. This paper presents an efficient parallel algorithm hash computation. It's a modification of the SHA-1 algorithm for faster parallel implementation in applications such as the digital signature and data preservation in digital forensics. The algorithm implements recursive hash to break the chain dependencies of the standard hash function. We discuss the theoretical foundation for the work including the collision probability and the performance implications. The algorithm is implemented using the OpenMP API and experiments performed using machines with multicore processors. The results show a performance gain by more than a factor of 3 when running on the 8-core configuration of the machine.

Kishore, N., Kapoor, B..  2014.  An efficient parallel algorithm for hash computation in security and forensics applications. Advance Computing Conference (IACC), 2014 IEEE International. :873-877.


Hashing algorithms are used extensively in information security and digital forensics applications. This paper presents an efficient parallel algorithm hash computation. It's a modification of the SHA-1 algorithm for faster parallel implementation in applications such as the digital signature and data preservation in digital forensics. The algorithm implements recursive hash to break the chain dependencies of the standard hash function. We discuss the theoretical foundation for the work including the collision probability and the performance implications. The algorithm is implemented using the OpenMP API and experiments performed using machines with multicore processors. The results show a performance gain by more than a factor of 3 when running on the 8-core configuration of the machine.