Biblio
In this paper, a novel DNA based computing method is proposed for encryption of biometric color(face)and gray fingerprint images. In many applications of present scenario, gray and color images are exhibited major role for authenticating identity of an individual. The values of aforementioned images have considered as two separate matrices. The key generation process two level mathematical operations have applied on fingerprint image for generating encryption key. For enhancing security to biometric image, DNA computing has done on the above matrices generating DNA sequence. Further, DNA sequences have scrambled to add complexity to biometric image. Results of blending images, image of DNA computing has shown in experimental section. It is observed that the proposed substitution DNA computing algorithm has shown good resistant against statistical and differential attacks.
The current paper proposes a method to combine the theoretical concepts of the parallel processing created by the DNA computing and GA environments, with the effectiveness novel mechanism of the distinction and discover of the cryptosystem keys. Three-level contributions to the current work, the first is the adoption of a final key sequence mechanism by the principle of interconnected sequence parts, the second to exploit the principle of the parallel that provides GA in the search for the counter value of the sequences of the challenge to the mechanism of the discrimination, the third, the most important and broadening the breaking of the cipher, is the harmony of the principle of the parallelism that has found via the DNA computing to discover the basic encryption key. The proposed method constructs a combined set of files includes binary sequences produced from substitution of the guess attributes of the binary equations system of the cryptosystem, as well as generating files that include all the prospects of the DNA strands for all successive cipher characters, the way to process these files to be obtained from the first character file, where extract a key sequence of each sequence from mentioned file and processed with the binary sequences that mentioned the counter produced from GA. The aim of the paper is exploitation and implementation the theoretical principles of the parallelism that providing via biological environment with the new sequences recognition mechanism in the cryptanalysis.
DNA cryptography becomes a burgeoning new area of study along with the fast-developing of DNA computing and modern cryptography. Point-doubling, point-addition and point-multiplication are three fundamental point-operations to construct encryption protocols in some cryptosystem over mathematical curves such as elliptic curves and conic curves. This paper proposes a DNA computing model to calculate point-doubling in conic curves cryptosystem over finite held GF(2n). By decomposing and rearranging the computing steps of point-doubling, the assembly process could be fulfilled by using 8 different types of computation tiles performing different functions with 1097 encoding ways. This model could also figure out point-multiplication if its coefficient is 2k. The assembly time complexity is 2kn+n-k-1, and the space complexity is k2n2+kn2-k2n.
DNA cryptography is one of the promising fields in cryptographic research which emerged with the evolution of DNA computing. In this era, end to end transmission of secure data by ensuring confidentiality and authenticity over the networks is a real challenge. Even though various DNA based cryptographic algorithms exists, they are not secure enough to provide better security as required with today's security requirements. Hence we propose a cryptographic model which will enhance the message security. A new method of round key selection is used, which provides better and enhanced security against intruder's attack. The crucial attraction of this proposed model is providing multi level security of 3 levels with round key selection and message encryption in level 1, 16×16 matrix manipulation using asymmetric key encryption in level 2 and shift operations in level 3. Thus we design a system with multi level encryption without compromising complexity and size of the cipher text.
Emerging communication technologies in distributed network systems require transfer of biometric digital images with high security. Network security is identified by the changes in system behavior which is either Dynamic or Deterministic. Performance computation is complex in dynamic system where cryptographic techniques are not highly suitable. Chaotic theory solves complex problems of nonlinear deterministic system. Several chaotic methods are combined to get hyper chaotic system for more security. Chaotic theory along with DNA sequence enhances security of biometric image encryption. Implementation proves the encrypted image is highly chaotic and resistant to various attacks.
As most of the modern encryption algorithms are broken fully/partially, the world of information security looks in new directions to protect the data it transmits. The concept of using DNA computing in the fields of cryptography has been identified as a possible technology that may bring forward a new hope for hybrid and unbreakable algorithms. Currently, several DNA computing algorithms are proposed for cryptography, cryptanalysis and steganography problems, and they are proven to be very powerful in these areas. This paper gives an architectural framework for encryption & Generation of digital signature using DNA Cryptography. To analyze the performance; the original plaintext size and the key size; together with the encryption and decryption time are examined also the experiments on plaintext with different contents are performed to test the robustness of the program.