Biblio
There are various Lightweight Block Ciphers (LBC) nowadays that exist to meet the demand on security requirements of the current trend in computing world, the application in the resource-constrained devices, and the Internet of Things (IoT) technologies. One way to evaluate these LBCs is to conduct a performance analysis. Performance evaluation parameters seek appropriate value such as encryption time, security level, scalability, and flexibility. Like SIMECK block cipher whose algorithm design was anchored with the SIMON and SPECK block ciphers were efficient in security and performance, there is a need to revisit its design. This paper aims to present a comparative study on the performance analysis of the enhanced round function of the SIMECK Family block cipher. The enhanced ARX structure of the round function on the three variants shows an efficient performance over the original algorithm in different simulations using the following methods of measurement; avalanche effect, runtime performance, and brute-force attack. Its recommended that the enhanced round function of the SIMECK family be evaluated by different security measurements and attacks.
With the wide use of smart device made huge amount of information arise. This information needed new methods to deal with it from that perspective big data concept arise. Most of the concerns on big data are given to handle data without concentrating on its security. Encryption is the best use to keep data safe from malicious users. However, ordinary encryption methods are not suitable for big data. Selective encryption is an encryption method that encrypts only the important part of the message. However, we deal with uncertainty to evaluate the important part of the message. The problem arises when the important part is not encrypted. This is the motivation of the paper. In this paper we propose security framework to secure important and unimportant portion of the message to overcome the uncertainty. However, each will take a different encryption technique for better performance without losing security. The framework selects the important parts of the message to be encrypted with a strong algorithm and the weak part with a medium algorithm. The important of the word is defined according to how its origin frequently appears. This framework is applied on amazon EC2 (elastic compute cloud). A comparison between the proposed framework, the full encryption method and Toss-A-Coin method are performed according to encryption time and throughput. The results showed that the proposed method gives better performance according to encryption time, throughput than full encryption.
As most of the modern encryption algorithms are broken fully/partially, the world of information security looks in new directions to protect the data it transmits. The concept of using DNA computing in the fields of cryptography has been identified as a possible technology that may bring forward a new hope for hybrid and unbreakable algorithms. Currently, several DNA computing algorithms are proposed for cryptography, cryptanalysis and steganography problems, and they are proven to be very powerful in these areas. This paper gives an architectural framework for encryption & Generation of digital signature using DNA Cryptography. To analyze the performance; the original plaintext size and the key size; together with the encryption and decryption time are examined also the experiments on plaintext with different contents are performed to test the robustness of the program.