Visible to the public Biblio

Filters: Keyword is Mobile and Wireless Security  [Clear All Filters]
2017-09-05
Luo, Chu, Fylakis, Angelos, Partala, Juha, Klakegg, Simon, Goncalves, Jorge, Liang, Kaitai, Seppänen, Tapio, Kostakos, Vassilis.  2016.  A Data Hiding Approach for Sensitive Smartphone Data. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :557–568.

We develop and evaluate a data hiding method that enables smartphones to encrypt and embed sensitive information into carrier streams of sensor data. Our evaluation considers multiple handsets and a variety of data types, and we demonstrate that our method has a computational cost that allows real-time data hiding on smartphones with negligible distortion of the carrier stream. These characteristics make it suitable for smartphone applications involving privacy-sensitive data such as medical monitoring systems and digital forensics tools.

2017-08-22
Luo, Chu, Fylakis, Angelos, Partala, Juha, Klakegg, Simon, Goncalves, Jorge, Liang, Kaitai, Seppänen, Tapio, Kostakos, Vassilis.  2016.  A Data Hiding Approach for Sensitive Smartphone Data. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :557–568.

We develop and evaluate a data hiding method that enables smartphones to encrypt and embed sensitive information into carrier streams of sensor data. Our evaluation considers multiple handsets and a variety of data types, and we demonstrate that our method has a computational cost that allows real-time data hiding on smartphones with negligible distortion of the carrier stream. These characteristics make it suitable for smartphone applications involving privacy-sensitive data such as medical monitoring systems and digital forensics tools.

2014-09-17
Liu, Qian, Bae, Juhee, Watson, Benjamin, McLaughhlin, Anne, Enck, William.  2014.  Modeling and Sensing Risky User Behavior on Mobile Devices. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :33:1–33:2.

As mobile technology begins to dominate computing, understanding how their use impacts security becomes increasingly important. Fortunately, this challenge is also an opportunity: the rich set of sensors with which most mobile devices are equipped provide a rich contextual dataset, one that should enable mobile user behavior to be modeled well enough to predict when users are likely to act insecurely, and provide cognitively grounded explanations of those behaviors. We will evaluate this hypothesis with a series of experiments designed first to confirm that mobile sensor data can reliably predict user stress, and that users experiencing such stress are more likely to act insecurely.

Davis, Agnes, Shashidharan, Ashwin, Liu, Qian, Enck, William, McLaughlin, Anne, Watson, Benjamin.  2014.  Insecure Behaviors on Mobile Devices Under Stress. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :31:1–31:2.

One of the biggest challenges in mobile security is human behavior. The most secure password may be useless if it is sent as a text or in an email. The most secure network is only as secure as its most careless user. Thus, in the current project we sought to discover the conditions under which users of mobile devices were most likely to make security errors. This scaffolds a larger project where we will develop automatic ways of detecting such environments and eventually supporting users during these times to encourage safe mobile behaviors.