Biblio
Phishing sends malicious links or attachments through emails that can perform various functions, including capturing the victim's login credentials or account information. These emails harm the victims, cause money loss, and identity theft. In this paper, we contribute to solving the phishing problem by developing an extension for the Google Chrome web browser. In the development of this feature, we used JavaScript PL. To be able to identify and prevent the fishing attack, a combination of Blacklisting and semantic analysis methods was used. Furthermore, a database for phishing sites is generated, and the text, links, images, and other data on-site are analyzed for pattern recognition. Finally, our proposed solution was tested and compared to existing approaches. The results validate that our proposed method is capable of handling the phishing issue substantially.
Internet users are increasing day by day. The web services and mobile web applications or desktop web application's demands are also increasing. The chances of a system being hacked are also increasing. All web applications maintain data at the backend database from which results are retrieved. As web applications can be accessed from anywhere all around the world which must be available to all the users of the web application. SQL injection attack is nowadays one of the topmost threats for security of web applications. By using SQL injection attackers can steal confidential information. In this paper, the SQL injection attack detection method by removing the parameter values of the SQL query is discussed and results are presented.
This paper introduces the first state-based formalization of isolation guarantees. Our approach is premised on a simple observation: applications view storage systems as black-boxes that transition through a series of states, a subset of which are observed by applications. Defining isolation guarantees in terms of these states frees definitions from implementation-specific assumptions. It makes immediately clear what anomalies, if any, applications can expect to observe, thus bridging the gap that exists today between how isolation guarantees are defined and how they are perceived. The clarity that results from definitions based on client-observable states brings forth several benefits. First, it allows us to easily compare the guarantees of distinct, but semantically close, isolation guarantees. We find that several well-known guarantees, previously thought to be distinct, are in fact equivalent, and that many previously incomparable flavors of snapshot isolation can be organized in a clean hierarchy. Second, freeing definitions from implementation-specific artefacts can suggest more efficient implementations of the same isolation guarantee. We show how a client-centric implementation of parallel snapshot isolation can be more resilient to slowdown cascades, a common phenomenon in large-scale datacenters.
ERP helps enterprises to integrate internal information and to improve operating performance and reaction capability. However, it is not enough to depend on ERP if enterprises want to develop quickly. The enterprise also needs several external supporting sub-systems such as personnel management system, equipment management system, etc. These sub-systems maybe outsourcing customized or developed by internal IT staff. They may be distributed in many branches or headquarter to collect the first line of data and then to deliver data to ERP for data integration. Most enterprises use human or timing batch process via internet to deliver data to ERP, but the two methods are not ideal from the view point of efficiency and security. This paper proposes a fast and safe way with both trigger and data replication techniques to deliver in time the distributed data to ERP for data integration.
Security and privacy issues of the Internet of Things (IoT in short, hereafter) attracts the hot topic of researches through these years. As the relationship between user and server become more complicated than before, the existing security solutions might not provide exhaustive securities in IoT environment and novel solutions become new research challenges, e.g., the solutions based on symmetric cryptosystems are unsuited to handle with the occasion that decryption is only allowed in specific time range. In this paper, a new scalable one-time file encryption scheme combines reliable cryptographic techniques, which is named OTFEP, is proposed to satisfy specialized security requirements. One of OTFEP's key features is that it offers a mechanism to protect files in the database from arbitrary visiting from system manager or third-party auditors. OTFEP uses two different approaches to deal with relatively small file and stream file. Moreover, OTFEP supports good node scalability and secure key distribution mechanism. Based on its practical security and performance, OTFEP can be considered in specific IoT devices where one-time file encryption is necessary.
This paper begins to describe a new kind of database, one that explores a diverse range of movement in the field of dance through capture of different bodies and different backgrounds - or what we are terming movement vernaculars. We re-purpose Ivan Illich's concept of 'vernacular work' [11] here to refer to those everyday forms of dance and organized movement that are informal, refractory (resistant to formal analysis), yet are socially reproduced and derived from a commons. The project investigates the notion of vernaculars in movement that is intentional and aesthetic through the development of a computational approach that highlights both similarities and differences, thereby revealing the specificities of each individual mover. This paper presents an example of how this movement database is used as a research tool, and how the fruits of that research can be added back to the database, thus adding a novel layer of annotation and further enriching the collection. Future researchers can then benefit from this layer, further refining and building upon these techniques. The creation of a robust, open source, movement lexicon repository will allow for observation, speculation, and contextualization - along with the provision of clean and complex data sets for new forms of creative expression.
Cloud Computing is one of the large and essential environment now a days to work for the storage collection and privacy preserve to that data. Cloud data security is most important and major concern for the client while use of the cloud services provided by the different service providers. There can be some major security concern and conflicts between the client and the service provider. To get out from those issues, a third party auditor uses as an auditor for assurance of data in the environment. Storage systems for the cloud has many fundamental challenges still today. All basic as well critical challenges among which storage space and security is generally the top concern in the cloud environment. To give the appropriate security issues we have proposed third party authentication system. The cloud not only for the simplified data storage but also secure data acquisition in cloud environment. At last we have perform different security analysis as well performance analysis. It give the results that proposed scheme has significant increases in efficiency for maintaining highly secure data storage and acquisition. The proposed method also helps to minimize the cost in environment and also increases communication efficiency in the cloud environment.
Due to the development of cloud computing and NoSQL database, more and more sensitive information are stored in NoSQL databases, which exposes quite a lot security vulnerabilities. This paper discusses security features of MongoDB database and proposes a transparent middleware implementation. The analysis of experiment results show that this transparent middleware can efficiently encrypt sensitive data specified by users on a dataset level. Existing application systems do not need too many modifications in order to apply this middleware.
In any security system, there are many security issues that are related to either the sender or the receiver of the message. Quantum computing has proven to be a plausible approach to solving many security issues such as eavesdropping, replay attack and man-in-the-middle attack. In the e-voting system, one of these issues has been solved, namely, the integrity of the data (ballot). In this paper, we propose a scheme that solves the problem of repudiation that could occur when the voter denies the value of the ballot either for cheating purposes or for a real change in the value by a third party. By using an entanglement concept between two parties randomly, the person who is going to verify the ballots will create the entangled state and keep it in a database to use it in the future for the purpose of the non-repudiation of any of these two voters.