Biblio
Nowadays the use of the Internet is growing; E-voting system has been used by different countries because it reduces the cost and the time which used to consumed by using traditional voting. When the voter wants to access the E-voting system through the web application, there are requirements such as a web browser and a server. The voter uses the web browser to reach to a centralized database. The use of a centralized database for the voting system has some security issues such as Data modification through the third party in the network due to the use of the central database system as well as the result of the voting is not shown in real-time. However, this paper aims to provide an E-voting system with high security by using blockchain. Blockchain provides a decentralized model that makes the network Reliable, safe, flexible, and able to support real-time services.
Electronic voting systems have enhanced efficiency in student elections management in universities, supporting such elections to become less expensive, logistically simple, with higher accuracy levels as compared to manually conducted elections. However, e-voting systems that are confined to campus hall voting inhibits access to eligible voters who are away from campus. This study examined the challenges of lack of wide access and impersonation of voter in the student elections of 2018 in Kabarak University. The main objective of this study was therefore to upgrade the offline electronic voting system through developing a secure online voting system and deploying the system for use in the 2019 student elections at Kabarak University. The resultant system and development process employed demonstrate the applicability of a secure online voting not only in the higher education context, but also in other democracies where infusion of online access and authentication in the voting processes is a requisite.
The development in the web technologies given growth to the new application that will make the voting process very easy and proficient. The E-voting helps in providing convenient, capture and count the votes in an election. This project provides the description about e-voting using an Android platform. The proposed e-voting system helps the user to cast the vote without visiting the polling booth. The application provides authentication measures in order to avoid fraud voters using the OTP. Once the voting process is finished the results will be available within a fraction of seconds. All the casted vote count is encrypted using AES256 algorithm and stored in the database in order to avoid any outbreaks and revelation of results by third person other than the administrator.
Cryptographic protocols are the basis for the security of any protected system, including the electronic voting system. One of the most effective ways to analyze protocol security is to use verifiers. In this paper, the formal verifier SPIN was used to analyze the security of the cryptographic protocol for e-voting, which is based on model checking using linear temporal logic (LTL). The cryptographic protocol of electronic voting is described. The main structural units of the Promela language used for simulation in the SPIN verifier are described. The model of the electronic voting protocol in the language Promela is given. The interacting parties, transferred data, the order of the messages transmitted between the parties are described. Security of the cryptographic protocol using the SPIN tool is verified. The simulation of the protocol with active intruder using the man in the middle attack (MITM) to substitute data is made. In the simulation results it is established that the protocol correctly handles the case of an active attack on the parties' authentication.
We propose a new voting scheme, BeleniosRF, that offers both receipt-freeness and end-to-end verifiability. It is receipt-free in a strong sense, meaning that even dishonest voters cannot prove how they voted. We provide a game-based definition of receipt-freeness for voting protocols with non-interactive ballot casting, which we name strong receipt-freeness (sRF). To our knowledge, sRF is the first game-based definition of receipt-freeness in the literature, and it has the merit of being particularly concise and simple. Built upon the Helios protocol, BeleniosRF inherits its simplicity and does not require any anti-coercion strategy from the voters. We implement BeleniosRF and show its feasibility on a number of platforms, including desktop computers and smartphones.
In any security system, there are many security issues that are related to either the sender or the receiver of the message. Quantum computing has proven to be a plausible approach to solving many security issues such as eavesdropping, replay attack and man-in-the-middle attack. In the e-voting system, one of these issues has been solved, namely, the integrity of the data (ballot). In this paper, we propose a scheme that solves the problem of repudiation that could occur when the voter denies the value of the ballot either for cheating purposes or for a real change in the value by a third party. By using an entanglement concept between two parties randomly, the person who is going to verify the ballots will create the entangled state and keep it in a database to use it in the future for the purpose of the non-repudiation of any of these two voters.