Biblio
In this work we introduce a novel QKD protocol capable of smoothly transitioning, via a user-tuneable parameter, from classical to semi-quantum in order to help understand the effect of quantum communication resources on secure key distribution. We perform an information theoretic security analysis of this protocol to determine what level of "quantumness" is sufficient to achieve security, and we discover some rather interesting properties of this protocol along the way.
Due to the importance of securing electronic transactions, many cryptographic protocols have been employed, that mainly depend on distributed keys between the intended parties. In classical computers, the security of these protocols depends on the mathematical complexity of the encoding functions and on the length of the key. However, the existing classical algorithms 100% breakable with enough computational power, which can be provided by quantum machines. Moving to quantum computation, the field of security shifts into a new area of cryptographic solutions which is now the field of quantum cryptography. The era of quantum computers is at its beginning. There are few practical implementations and evaluations of quantum protocols. Therefore, the paper defines a well-known quantum key distribution protocol which is BB84 then provides a practical implementation of it on IBM QX software. The practical implementations showed that there were differences between BB84 theoretical expected results and the practical implementation results. Due to this, the paper provides a statistical analysis of the experiments by comparing the standard deviation of the results. Using the BB84 protocol the existence of a third-party eavesdropper can be detected. Thus, calculations of the probability of detecting/not detecting a third-party eavesdropping have been provided. These values are again compared to the theoretical expectation. The calculations showed that with the greater number of qubits, the percentage of detecting eavesdropper will be higher.
Today's rapid progress in the physical implementation of quantum computers demands scalable synthesis methods to map practical logic designs to quantum architectures. There exist many quantum algorithms which use classical functions with superposition of states. Motivated by recent trends, in this paper, we show the design of quantum circuit to perform modular exponentiation functions using two different approaches. In the design phase, first we generate quantum circuit from a verilog implementation of exponentiation functions using synthesis tools and then apply two different Quantum Error Correction techniques. Finally the circuit is further optimized using the Linear Nearest Neighbor (LNN) Property. We demonstrate the effectiveness of our approach by generating a set of networks for the reversible modular exponentiation function for a set of input values. At the end of the work, we have summarized the obtained results, where a cost analysis over our developed approaches has been made. Experimental results show that depending on the choice of different QECC methods the performance figures can vary by up to 11%, 10%, 8% in T-count, number of qubits, number of gates respectively.
Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.
In any security system, there are many security issues that are related to either the sender or the receiver of the message. Quantum computing has proven to be a plausible approach to solving many security issues such as eavesdropping, replay attack and man-in-the-middle attack. In the e-voting system, one of these issues has been solved, namely, the integrity of the data (ballot). In this paper, we propose a scheme that solves the problem of repudiation that could occur when the voter denies the value of the ballot either for cheating purposes or for a real change in the value by a third party. By using an entanglement concept between two parties randomly, the person who is going to verify the ballots will create the entangled state and keep it in a database to use it in the future for the purpose of the non-repudiation of any of these two voters.