Visible to the public Biblio

Filters: Keyword is Qubit  [Clear All Filters]
2022-12-20
Hasan, Syed Rakib, Chowdhury, Mostafa Zaman, Saiam, Md..  2022.  A New Quantum Visible Light Communication for Future Wireless Network Systems. 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE). :1–4.
In the near future, the high data rate challenge would not be possible by using the radio frequency (RF) only. As the user will increase, the network traffic will increase proportionally. Visible light communication (VLC) is a good solution to support huge number of indoor users. VLC has high data rate over RF communication. The way internet users are increasing, we have to think over VLC technology. Not only the data rate is a concern but also its security, cost, and reliability have to be considered for a good communication network. Quantum technology makes a great impact on communication and computing in both areas. Quantum communication technology has the ability to support better channel capacity, higher security, and lower latency. This paper combines the quantum technology over the existing VLC and compares the performance between quantum visible light communication performance (QVLC) over the existing VLC system. Research findings clearly show that the performance of QVLC is better than the existing VLC system.
2022-07-14
Ali, Arshad.  2021.  A Pragmatic Analysis of Pre- and Post-Quantum Cyber Security Scenarios. 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST). :686—692.
The advancements in quantum computing and quantum cryptology have recently started to gain momentum and transformation of usable quantum technologies from dream to reality has begun to look viable. This has created an immediate requirement to comprehend quantum attacks and their cryptographic implications, which is a prerequisite obligation to design cryptographic systems resistant to current and futuristic projected quantum and conventional attacks. In this context, this paper reviews the prevalent quantum concepts and analyses their envisaged impact on various aspects of modern-day communication and information security technologies. Moreover, the paper also presents six open-problems and two conjectures, which are formulated to define prerequisite technological obligations for fully comprehending the futuristic quantum threats to contemporary communication security technologies and information assets processed through these systems. Furthermore, the paper also presents some important concepts in the form of questions and discusses some recent trends adapted in cryptographic designs to thwart quantum attacks.
De, Rohit, Moberly, Raymond, Beery, Colton, Juybari, Jeremy, Sundqvist, Kyle.  2021.  Multi-Qubit Size-Hopping Deutsch-Jozsa Algorithm with Qubit Reordering for Secure Quantum Key Distribution. 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). :473—474.
As a classic quantum computing implementation, the Deustch-Jozsa (DJ) algorithm is taught in many courses pertaining to quantum information science and technology (QIST). We exploit the DJ framework as an educational testbed, illustrating fundamental qubit concepts while identifying associated algorithmic challenges. In this work, we present a self-contained exploration which may be beneficial in educating the future quantum workforce. Quantum Key Distribution (QKD), an improvement over the classical Public Key Infrastructure (PKI), allows two parties, Alice and Bob, to share a secret key by using the quantum physical properties. For QKD the DJ-packets, consisting of the input qubits and the target qubit for the DJ algorithm, carry the secret information between Alice and Bob. Previous research from Nagata and Nakamura discovered in 2015 that the DJ algorithm for QKD allows an attacker to successfully intercept and remain undetected. Improving upon the past research we increased the entropy of DJ-packets through: (i) size hopping (H), where the number of qubits in consecutive DJ-packets keeps on changing and (ii) reordering (R) the qubits within the DJ-packets. These concepts together illustrate the multiple scales where entropy may increase in a DJ algorithm to make for a more robust QKD framework, and therefore significantly decrease Eve’s chance of success. The proof of concept of the new schemes is tested on Google’s Cirq quantum simulator, and detailed python simulations show that attacker’s interception success rate can be drastically reduced.
2022-05-20
Susulovska, N. A., Gnatenko, Kh. P..  2021.  Quantifying Geometric Measure of Entanglement of Multi-qubit Graph States on the IBM’s Quantum Computer. 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). :465–466.
Quantum entanglement gives rise to a range of non-classical effects, which are extensively exploited in quantum computing and quantum communication. Therefore, detection and quantification of entanglement as well as preparation of highly entangled quantum states remain the fundamental objectives in these fields. Much attention has been devoted to the studies of graph states, which play a role of a central resource in quantum error correction, quantum cryptography and practical quantum metrology in the presence of noise.We examine multi-qubit graph states generated by the action of controlled phase shift operators on a separable quantum state of a system, in which all the qubits are in arbitrary identical states. Analytical expression is obtained for the geometric measure of entanglement of a qubit with other qubits in graph states represented by arbitrary graphs. We conclude that this quantity depends on the degree of the vertex corresponding to the qubit, the absolute values of the parameter of the phase shift gate and the parameter of the initial state the gate is acting on. Moreover, the geometric measure of entanglement of certain types of graph states is quantified on the IBM’s quantum computer ibmq\_athens based on the measurements of the mean spin. Namely, we consider states associated with the native connectivity of ibmq\_athens, the claw and the complete graphs. Appropriate protocols are proposed to prepare these states on the quantum computer. The results of quantum computations verify our theoretical findings [1].
2022-05-06
Goswami, Partha Sarathi, Chakraborty, Tamal, Chattopadhyay, Abir.  2021.  A Secured Quantum Key Exchange Algorithm using Fermat Numbers and DNA Encoding. 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—8.
To address the concerns posed by certain security attacks on communication protocol, this paper proposes a Quantum Key Exchange algorithm coupled with an encoding scheme based on Fermat Numbers and DNA sequences. The concept of Watson-Crick’s transformation of DNA sequences and random property of the Fermat Numbers is applied for protection of the communication system by means of dual encryption. The key generation procedure is governed by a quantum bit rotation mechanism. The total process is illustrated with an example. Also, security analysis of the encryption and decryption process is also discussed.
2022-04-01
Neumann, Niels M. P., van Heesch, Maran P. P., Phillipson, Frank, Smallegange, Antoine A. P..  2021.  Quantum Computing for Military Applications. 2021 International Conference on Military Communication and Information Systems (ICMCIS). :1–8.
Quantum computers have the potential to outshine classical alternatives in solving specific problems, under the assumption of mature enough hardware. A specific subset of these problems relate to military applications. In this paper we consider the state-of-the-art of quantum technologies and different applications of this technology. Additionally, four use-cases of quantum computing specific for military applications are presented. These use-cases are directly in line with the 2021 AI strategic agenda of the Netherlands Ministry of Defense.
2022-03-14
Gustafson, Erik, Holzman, Burt, Kowalkowski, James, Lamm, Henry, Li, Andy C. Y., Perdue, Gabriel, Isakov, Sergei V., Martin, Orion, Thomson, Ross, Beall, Jackson et al..  2021.  Large scale multi-node simulations of ℤ2 gauge theory quantum circuits using Google Cloud Platform. 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS). :72—79.
Simulating quantum field theories on a quantum computer is one of the most exciting fundamental physics applications of quantum information science. Dynamical time evolution of quantum fields is a challenge that is beyond the capabilities of classical computing, but it can teach us important lessons about the fundamental fabric of space and time. Whether we may answer scientific questions of interest using near-term quantum computing hardware is an open question that requires a detailed simulation study of quantum noise. Here we present a large scale simulation study powered by a multi-node implementation of qsim using the Google Cloud Platform. We additionally employ newly-developed GPU capabilities in qsim and show how Tensor Processing Units — Application-specific Integrated Circuits (ASICs) specialized for Machine Learning — may be used to dramatically speed up the simulation of large quantum circuits. We demonstrate the use of high performance cloud computing for simulating ℤ2 quantum field theories on system sizes up to 36 qubits. We find this lattice size is not able to simulate our problem and observable combination with sufficient accuracy, implying more challenging observables of interest for this theory are likely beyond the reach of classical computation using exact circuit simulation.
2021-08-31
Bobrysheva, Julia, Zapechnikov, Sergey.  2020.  Post-Quantum Security of Messaging Protocols: Analysis of Double Ratcheting Algorithm. 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :2041—2044.
Development in the area of quantum technologies led to the appearance of first quantum computers. The threat of using a quantum computer for cryptanalysis requires wide implementing post-quantum security in computing algorithms and communication protocols. We evaluate the computational power of some existing quantum computers to illustrate the relevance of research in post-quantum security. One of the best ways to test post-quantum protocols is to embed them into some non-critical but widely-used sphere. Secure messaging is an excellent example of such an application. In the paper, we analyze the post-quantum security of well-known messaging specification Signal, which is considered to have high-security properties. The core of Signal specification is the Double Ratchet protocol. We notice and explain why it is not a post-quantum secure scheme. After that, we suggest some possible ways to improve the security features of Signal specification.
Shaik, Enaul haq, Rangaswamy, Nakkeeran.  2020.  Implementation of Quantum Gates based Logic Circuits using IBM Qiskit. 2020 5th International Conference on Computing, Communication and Security (ICCCS). :1—6.
Quantum computing is an emerging field that depends upon the basic properties of quantum physics and principles of classical systems. This leads a way to develop systems to solve complex problems that a classical system cannot do. In this article, we present simple methods to implement logic circuits using quantum gates. Logic gates and circuits are defined with quantum gates using Qiskit in Python. Later, they are verified with quantum circuits created by using IBM Quantum. Moreover, we propose a way of instantiating the basic logic circuits to design high-end logic expressions. As per our knowledge, the proposed simple approach may be helpful to solve the complex logical problems in near future.
2021-03-22
Larasati, H. T., Kim, H..  2020.  Simulation of Modular Exponentiation Circuit for Shor's Algorithm in Qiskit. 2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA. :1–7.
This paper discusses and demonstrates the construction of a quantum modular exponentiation circuit in the Qiskit simulator for use in Shor's Algorithm for integer factorization problem (IFP), which is deemed to be able to crack RSA cryptosystems when a large-qubit quantum computer exists. We base our implementation on Vedral, Barenco, and Ekert (VBE) proposal of quantum modular exponentiation, one of the firsts to explicitly provide the aforementioned circuit. Furthermore, we present an example simulation of how to construct a 7xmod 15 circuit in a step-by-step manner, giving clear and detailed information and consideration that currently not provided in the existing literature, and present the whole circuit for use in Shor's Algorithm. Our present simulation shows that the 4-bit VBE quantum modular exponentiation circuit can be constructed, simulated, and measured in Qiskit, while the Shor's Algorithm incorporating this VBE approach itself can be constructed but not yet simulated due to an overly large number of QASM instructions.
2020-06-02
Gagliano, Allison, Krawec, Walter O., Iqbal, Hasan.  2019.  From Classical to Semi-Quantum Secure Communication. 2019 IEEE International Symposium on Information Theory (ISIT). :1707—1711.

In this work we introduce a novel QKD protocol capable of smoothly transitioning, via a user-tuneable parameter, from classical to semi-quantum in order to help understand the effect of quantum communication resources on secure key distribution. We perform an information theoretic security analysis of this protocol to determine what level of "quantumness" is sufficient to achieve security, and we discover some rather interesting properties of this protocol along the way.

2020-03-04
AL-Mubayedh, Dhoha, AL-Khalis, Mashael, AL-Azman, Ghadeer, AL-Abdali, Manal, Al Fosail, Malak, Nagy, Naya.  2019.  Quantum Cryptography on IBM QX. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–6.

Due to the importance of securing electronic transactions, many cryptographic protocols have been employed, that mainly depend on distributed keys between the intended parties. In classical computers, the security of these protocols depends on the mathematical complexity of the encoding functions and on the length of the key. However, the existing classical algorithms 100% breakable with enough computational power, which can be provided by quantum machines. Moving to quantum computation, the field of security shifts into a new area of cryptographic solutions which is now the field of quantum cryptography. The era of quantum computers is at its beginning. There are few practical implementations and evaluations of quantum protocols. Therefore, the paper defines a well-known quantum key distribution protocol which is BB84 then provides a practical implementation of it on IBM QX software. The practical implementations showed that there were differences between BB84 theoretical expected results and the practical implementation results. Due to this, the paper provides a statistical analysis of the experiments by comparing the standard deviation of the results. Using the BB84 protocol the existence of a third-party eavesdropper can be detected. Thus, calculations of the probability of detecting/not detecting a third-party eavesdropping have been provided. These values are again compared to the theoretical expectation. The calculations showed that with the greater number of qubits, the percentage of detecting eavesdropper will be higher.

2020-01-20
Das, Rakesh, Chattopadhyay, Anupam, Rahaman, Hafizur.  2019.  Optimizing Quantum Circuits for Modular Exponentiation. 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID). :407–412.

Today's rapid progress in the physical implementation of quantum computers demands scalable synthesis methods to map practical logic designs to quantum architectures. There exist many quantum algorithms which use classical functions with superposition of states. Motivated by recent trends, in this paper, we show the design of quantum circuit to perform modular exponentiation functions using two different approaches. In the design phase, first we generate quantum circuit from a verilog implementation of exponentiation functions using synthesis tools and then apply two different Quantum Error Correction techniques. Finally the circuit is further optimized using the Linear Nearest Neighbor (LNN) Property. We demonstrate the effectiveness of our approach by generating a set of networks for the reversible modular exponentiation function for a set of input values. At the end of the work, we have summarized the obtained results, where a cost analysis over our developed approaches has been made. Experimental results show that depending on the choice of different QECC methods the performance figures can vary by up to 11%, 10%, 8% in T-count, number of qubits, number of gates respectively.

2019-10-08
Rahman, M. S., Hossam-E-Haider, M..  2019.  Quantum IoT: A Quantum Approach in IoT Security Maintenance. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :269–272.

Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.

2015-05-06
Alshammari, H., Elleithy, K., Almgren, K., Albelwi, S..  2014.  Group signature entanglement in e-voting system. Systems, Applications and Technology Conference (LISAT), 2014 IEEE Long Island. :1-4.

In any security system, there are many security issues that are related to either the sender or the receiver of the message. Quantum computing has proven to be a plausible approach to solving many security issues such as eavesdropping, replay attack and man-in-the-middle attack. In the e-voting system, one of these issues has been solved, namely, the integrity of the data (ballot). In this paper, we propose a scheme that solves the problem of repudiation that could occur when the voter denies the value of the ballot either for cheating purposes or for a real change in the value by a third party. By using an entanglement concept between two parties randomly, the person who is going to verify the ballots will create the entangled state and keep it in a database to use it in the future for the purpose of the non-repudiation of any of these two voters.