Visible to the public Biblio

Filters: Keyword is hardware trojan  [Clear All Filters]
Conference Paper
Monjur, Mezanur Rahman, Sunkavilli, Sandeep, Yu, Qiaoyan.  2020.  ADobf: Obfuscated Detection Method against Analog Trojans on I2C Master-Slave Interface. 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). :1064–1067.
Hardware Trojan war is expanding from digital world to analog domain. Although hardware Trojans in digital integrated circuits have been extensively investigated, there still lacks study on the Trojans crossing the boundary between digital and analog worlds. This work uses Inter-integrated Circuit (I2C) as an example to demonstrate the potential security threats on its master-slave interface. Furthermore, an obfuscated Trojan detection method is proposed to monitor the abnormal behaviors induced by analog Trojans on the I2C interface. Experimental results confirm that the proposed method has a high sensitivity to the compromised clock signal and can mitigate the clock mute attack with a success rate of over 98%.
Daoud, Luka, Rafla, Nader.  2019.  Analysis of Black Hole Router Attack in Network-on-Chip. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). :69–72.

Network-on-Chip (NoC) is the communication platform of the data among the processing cores in Multiprocessors System-on-Chip (MPSoC). NoC has become a target to security attacks and by outsourcing design, it can be infected with a malicious Hardware Trojan (HT) to degrades the system performance or leaves a back door for sensitive information leaking. In this paper, we proposed a HT model that applies a denial of service attack by deliberately discarding the data packets that are passing through the infected node creating a black hole in the NoC. It is known as Black Hole Router (BHR) attack. We studied the effect of the BHR attack on the NoC. The power and area overhead of the BHR are analyzed. We studied the effect of the locations of BHRs and their distribution in the network as well. The malicious nodes has very small area and power overhead, 1.98% and 0.74% respectively, with a very strong violent attack.

K, S. K., Sahoo, S., Mahapatra, A., Swain, A. K., Mahapatra, K. K..  2017.  Analysis of Side-Channel Attack AES Hardware Trojan Benchmarks against Countermeasures. 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :574–579.

Hardware Trojan (HT) is one of the well known hardware security issue in research community in last one decade. HT research is mainly focused on HT detection, HT defense and designing novel HT's. HT's are inserted by an adversary for leaking secret data, denial of service attacks etc. Trojan benchmark circuits for processors, cryptography and communication protocols from Trust-hub are widely used in HT research. And power analysis based side channel attacks and designing countermeasures against side channel attacks is a well established research area. Trust-Hub provides a power based side-channel attack promoting Advanced Encryption Standard (AES) HT benchmarks for research. In this work, we analyze the strength of AES HT benchmarks in the presence well known side-channel attack countermeasures. Masking, Random delay insertion and tweaking the operating frequency of clock used in sensitive operations are applied on AES benchmarks. Simulation and power profiling studies confirm that side-channel promoting HT benchmarks are resilient against these selected countermeasures and even in the presence of these countermeasures; an adversary can get the sensitive data by triggering the HT.

Gountia, Debasis, Roy, Sudip.  2019.  Checkpoints Assignment on Cyber-Physical Digital Microfluidic Biochips for Early Detection of Hardware Trojans. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :16–21.

Present security study involving analysis of manipulation of individual droplets of samples and reagents by digital microfluidic biochip has remarked that the biochip design flow is vulnerable to piracy attacks, hardware Trojans attacks, overproduction, Denial-of-Service attacks, and counterfeiting. Attackers can introduce bioprotocol manipulation attacks against biochips used for medical diagnosis, biochemical analysis, and frequent diseases detection in healthcare industry. Among these attacks, hardware Trojans have created a major threatening issue in its security concern with multiple ways to crack the sensitive data or alter original functionality by doing malicious operations in biochips. In this paper, we present a systematic algorithm for the assignment of checkpoints required for error-recovery of available bioprotocols in case of hardware Trojans attacks in performing operations by biochip. Moreover, it can guide the placement and timing of checkpoints so that the result of an attack is reduced, and hence enhance the security concerns of digital microfluidic biochips. Comparative study with traditional checkpoint schemes demonstrate the superiority of the proposed algorithm without overhead of the bioprotocol completion time with higher error detection accuracy.

Meraj Ahmed, M, Dhavlle, Abhijitt, Mansoor, Naseef, Sutradhar, Purab, Pudukotai Dinakarrao, Sai Manoj, Basu, Kanad, Ganguly, Amlan.  2020.  Defense Against on-Chip Trojans Enabling Traffic Analysis Attacks. 2020 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
Interconnection networks for multi/many-core processors or server systems are the backbone of the system as they enable data communication among the processing cores, caches, memory and other peripherals. Given the criticality of the interconnects, the system can be severely subverted if the interconnection is compromised. The threat of Hardware Trojans (HTs) penetrating complex hardware systems such as multi/many-core processors are increasing due to the increasing presence of third party players in a System-on-chip (SoC) design. Even by deploying naïve HTs, an adversary can exploit the Network-on-Chip (NoC) backbone of the processor and get access to communication patterns in the system. This information, if leaked to an attacker, can reveal important insights regarding the application suites running on the system; thereby compromising the user privacy and paving the way for more severe attacks on the entire system. In this paper, we demonstrate that one or more HTs embedded in the NoC of a multi/many-core processor is capable of leaking sensitive information regarding traffic patterns to an external malicious attacker; who, in turn, can analyze the HT payload data with machine learning techniques to infer the applications running on the processor. Furthermore, to protect against such attacks, we propose a Simulated Annealing-based randomized routing algorithm in the system. The proposed defense is capable of obfuscating the attacker's data processing capabilities to infer the user profiles successfully. Our experimental results demonstrate that the proposed randomized routing algorithm could reduce the accuracy of identifying user profiles by the attacker from \textbackslashtextgreater98% to \textbackslashtextless; 15% in multi/many-core systems.
Inoue, T., Hasegawa, K., Kobayashi, Y., Yanagisawa, M., Togawa, N..  2018.  Designing Subspecies of Hardware Trojans and Their Detection Using Neural Network Approach. 2018 IEEE 8th International Conference on Consumer Electronics - Berlin (ICCE-Berlin). :1-4.

Due to the recent technological development, home appliances and electric devices are equipped with high-performance hardware device. Since demand of hardware devices is increased, production base become internationalized to mass-produce hardware devices with low cost and hardware vendors outsource their products to third-party vendors. Accordingly, malicious third-party vendors can easily insert malfunctions (also known as "hardware Trojans'') into their products. In this paper, we design six kinds of hardware Trojans at a gate-level netlist, and apply a neural-network (NN) based hardware-Trojan detection method to them. The designed hardware Trojans are different in trigger circuits. In addition, we insert them to normal circuits, and detect hardware Trojans using a machine-learning-based hardware-Trojan detection method with neural networks. In our experiment, we learned Trojan-infected benchmarks using NN, and performed cross validation to evaluate the learned NN. The experimental results demonstrate that the average TPR (True Positive Rate) becomes 72.9%, the average TNR (True Negative Rate) becomes 90.0%.

Basu, Subhashree, Kule, Malay, Rahaman, Hafizur.  2021.  Detection of Hardware Trojan in Presence of Sneak Path in Memristive Nanocrossbar Circuits. 2021 International Symposium on Devices, Circuits and Systems (ISDCS). :1–4.
Memristive nano crossbar array has paved the way for high density memories but in a very low power environment. But such high density circuits face multiple problems at the time of implementation. The sneak path problem in crossbar array is one such problem which causes difficulty in distinguishing the logical states of the memristors. On the other hand, hardware Trojan causes malfunctioning of the circuit or performance degradation. If any of these are present in the nano crossbar, it is difficult to identify whether the performance degradation is due to the sneak path problem or due to that of Hardware Trojan.This paper makes a comparative study of the sneak path problem and the hardware Trojan to understand the performance difference between both. It is observed that some parameters are affected by sneak path problem but remains unaffected in presence of Hardware Trojan and vice versa. Analyzing these parameters, we can classify whether the performance degradation is due to sneak path or due to Hardware Trojan. The experimental results well establish the proposed methods of detection of hardware Trojan in presence of sneak path in memristive nano crossbar circuits.
Benhani, E. M., Bossuet, L..  2018.  DVFS as a Security Failure of TrustZone-enabled Heterogeneous SoC. 2018 25th IEEE International Conference on Electronics, Circuits and Systems (ICECS). :489—492.
Today, most embedded systems use Dynamic Voltage and Frequency Scaling (DVFS) to minimize energy consumption and maximize performance. The DVFS technique works by regulating the important parameters that govern the amount of energy consumed in a system, voltage and frequency. For the implementation of this technique, the operating system (OS) includes software applications that dynamically control a voltage regulator or a frequency regulator or both. In this paper, we demonstrate for the first time a malicious use of the frequency regulator against a TrustZone-enabled System-on-Chip (SoC). We demonstrate a use of frequency scaling to create covert channel in a TrustZone-enabled heterogeneous SoC. We present four proofs of concept to transfer sensitive data from a secure entity in the SoC to a non-secure one. The first proof of concept is from a secure ARM core to outside of SoC. The second is from a secure ARM core to a non-secure one. The third is from a non-trusted third party IP embedded in the programmable logic part of the SoC to a non-secure ARM core. And the last proof of concept is from a secure third party IP to a non-secure ARM core.
Daoud, Luka, Rafla, Nader.  2022.  Energy-Efficient Black Hole Router Detection in Network-on-Chip. 2022 IEEE 35th International System-on-Chip Conference (SOCC). :1–6.
The Network-on-Chip (NoC) is the communication heart in Multiprocessors System-on-Chip (MPSoC). It offers an efficient and scalable interconnection platform, which makes it a focal point of potential security threats. Due to outsourcing design, the NoC can be infected with a malicious circuit, known as Hardware Trojan (HT), to leak sensitive information or degrade the system’s performance and function. An HT can form a security threat by consciously dropping packets from the NoC, structuring a Black Hole Router (BHR) attack. This paper presents an end-to-end secure interconnection network against the BHR attack. The proposed scheme is energy-efficient to detect the BHR in runtime with 1% and 2% average throughput and energy consumption overheads, respectively.
Zhang, Z., Yu, Q., Njilla, L., Kamhoua, C..  2018.  FPGA-oriented moving target defense against security threats from malicious FPGA tools. 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :163–166.
The imbalance relationship between FPGA hardware/software providers and FPGA users challenges the assurance of secure design on FPGAs. Existing efforts on FPGA security primarily focus on reverse engineering the downloaded FPGA configuration, retrieving the authentication code or crypto key stored on the embedded memory in FPGAs, and countermeasures for the security threats above. In this work, we investigate new security threats from malicious FPGA tools, and identify stealthy attacks that could occur during FPGA deployment. To address those attacks, we exploit the principles of moving target defense (MTD) and propose a FPGA-oriented MTD (FOMTD) method. Our method is composed of three defense lines, which are formed by an improved user constraint file, random selection of design replicas, and runtime submodule assembling, respectively. The FPGA emulation results show that the proposed FOMTD method reduces the hardware Trojan hit rate by 60% over the baseline, at the cost of 10.76% more power consumption.
Sai Sruthi, Ch, Lohitha, M, Sriniketh, S.K, Manassa, D, Srilakshmi, K, Priyatharishini, M.  2021.  Genetic Algorithm based Hardware Trojan Detection. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1431–1436.
There is an increasing concern about possible hostile modification done to ICs, which are used in various critical applications. Such malicious modifications are referred to as Hardware Trojan. A novel procedure to detect these malicious Trojans using Genetic algorithm along with the logical masking technique which masks the Trojan module when embedded is presented in this paper. The circuit features such as transition probability and SCOAP are used as suitable parameters to identify the rare nodes which are more susceptible for Trojan insertion. A set of test patterns called optimal test patterns are generated using Genetic algorithm to claim that these test vectors are more feasible to detect the presence of Trojan in the circuit under test. The proposed methodologies are validated in accordance with ISCAS '85 and ISCAS '89 benchmark circuits. The experimental results proven that it achieves maximum Trigger coverage, Trojan coverage and is also able to successfully mask the inserted Trojan when it is triggered by the optimal test patterns.
Dofe, J., Frey, J., Yu, Q..  2016.  Hardware security assurance in emerging IoT applications. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). :2050–2053.
The Internet of Things (IoT) offers a more advanced service than a single device or an isolated system, as IoT connects diverse components, such as sensors, actuators, and embedded devices through the internet. As predicted by Cisco, there will be 50 billion IoT connected devices by 2020. Integration of such a tremendous number of devices into IoT potentially brings in a new concern, system security. In this work, we review two typical hardware attacks that can harm the emerging IoT applications. As IoT devices typically have limited computation power and need to be energy efficient, sophisticated cryptographic algorithms and authentication protocols are not suitable for every IoT device. To simultaneously thwart hardware Trojan and side-channel analysis attacks, we propose a low-cost dynamic permutation method for IoT devices. Experimental results show that the proposed method achieves 5.8X higher accumulated partial guessing entropy than the baseline, thus strengthening the IoT processing unit against hardware attacks.
Sun, Chen, Cheng, Liye, Wang, Liwei, Huang, Yun.  2020.  Hardware Trojan Detection Based on SRC. 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :472–475.
The security of integrated circuits (IC) plays a very significant role on military, economy, communication and other industries. Due to the globalization of the integrated circuit (IC) from design to manufacturing process, the IC chip is vulnerable to be implanted malicious circuit, which is known as hardware Trojan (HT). When the HT is activated, it will modify the functionality, reduce the reliability of IC, and even leak confidential information about the system and seriously threatens national security. The HT detection theory and method is hotspot in the security of integrated circuit. However, most methods are focusing on the simulated data. Moreover, the measurement data of the real circuit are greatly affected by the measurement noise and process disturbances and few methods are available with small size of the Trojan circuit. In this paper, the problem of detection was cast as signal representation among multiple linear regression and sparse representation-based classifier (SRC) were first applied for Trojan detection. We assume that the training samples from a single class do lie on a subspace, and the test samples can be represented by the single class. The proposed SRC HT detection method on real integrated circuit shows high accuracy and efficiency.
Yoshimizu, N..  2014.  Hardware trojan detection by symmetry breaking in path delays. Hardware-Oriented Security and Trust (HOST), 2014 IEEE International Symposium on. :107-111.

This paper discusses the detection of hardware Trojans (HTs) by their breaking of symmetries within integrated circuits (ICs), as measured by path delays. Typically, path delay or side channel methods rely on comparisons to a golden, or trusted, sample. However, golden standards are affected by inter-and intra-die variations which limit the confidence in such comparisons. Symmetry is a way to detect modifications to an IC with increased confidence by confirming subcircuit consistencies within as it was originally designed. The difference in delays from a given path to a set of symmetric paths will be the same unless an inserted HT breaks symmetry. Symmetry can naturally exist in ICs or be artificially added. We describe methods to find and measure path delays against symmetric paths, as well as the advantages and disadvantages of this method. We discuss results of examples from benchmark circuits demonstrating the detection of hardware Trojans.
 

Hu, Taifeng, Wu, Liji, Zhang, Xiangmin, Yin, Yanzhao, Yang, Yijun.  2019.  Hardware Trojan Detection Combine with Machine Learning: an SVM-based Detection Approach. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :202–206.
With the application of integrated circuits (ICs) appears in all aspects of life, whether an IC is security and reliable has caused increasing worry which is of significant necessity. An attacker can achieve the malicious purpose by adding or removing some modules, so called hardware Trojans (HTs). In this paper, we use side-channel analysis (SCA) and support vector machine (SVM) classifier to determine whether there is a Trojan in the circuit. We use SAKURA-G circuit board with Xilinx SPARTAN-6 to complete our experiment. Results show that the Trojan detection rate is up to 93% and the classification accuracy is up to 91.8475%.
Tang, Nan, Zhou, Wanting, Li, Lei, Yang, Ji, Li, Rui, He, Yuanhang.  2020.  Hardware Trojan Detection Method Based on the Frequency Domain Characteristics of Power Consumption. 2020 13th International Symposium on Computational Intelligence and Design (ISCID). :410–413.
Hardware security has long been an important issue in the current IC design. In this paper, a hardware Trojan detection method based on frequency domain characteristics of power consumption is proposed. For some HTs, it is difficult to detect based on the time domain characteristics, these types of hardware Trojan can be analyzed in the frequency domain, and Mahalanobis distance is used to classify designs with or without HTs. The experimental results demonstrate that taking 10% distance as the criterion, the hardware Trojan detection results in the frequency domain have almost no failure cases in all the tested designs.
Takemoto, Shu, Ikezaki, Yoshiya, Nozaki, Yusuke, Yoshikawa, Masaya.  2021.  Hardware Trojan for Lightweight Cryptoraphy Elephant. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :944–945.
While a huge number of IoT devices are connecting to the cyber physical systems, the demand for security of these devices are increasing. Due to the demand, world-wide competition for lightweight cryptography oriented towards small devices have been held. Although tamper resistance against illegal attacks were evaluated in the competition, there is no evaluation for embedded malicious circuits such as hardware Trojan.To achieve security evaluation for embedded malicious circuits, this study proposes an implementation method of hardware Trojan for Elephant which is one of the finalists in the competition. And also, the implementation overhead of hardware Trojans and the security risk of hardware Trojan are evaluated.
Inaba, Koutaro, Yoneda, Tomohiro, Kanamoto, Toshiki, Kurokawa, Atsushi, Imai, Masashi.  2019.  Hardware Trojan Insertion and Detection in Asynchronous Circuits. 2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC). :134–143.

Hardware Trojan threats caused by malicious designers and untrusted manufacturers have become one of serious issues in modern VLSI systems. In this paper, we show some experimental results to insert hardware Trojans into asynchronous circuits. As a result, the overhead of hardware Trojan insertion in asynchronous circuits may be small for malicious designers who have enough knowledge about the asynchronous circuits. In addition, we also show several Trojan detection methods using deep learning schemes which have been proposed to detect synchronous hardware Trojan in the netlist level. We apply them to asynchronous hardware Trojan circuits and show their results. They have a great potential to detect a hardware Trojan in asynchronous circuits.

Xu, Lan, Li, Jianwei, Dai, Li, Yu, Ningmei.  2020.  Hardware Trojans Detection Based on BP Neural Network. 2020 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). :149–150.
This paper uses side channel analysis to detect hardware Trojan based on back propagation neural network. First, a power consumption collection platform is built to collect power waveforms, and the amplifier is utilized to amplify power consumption information to improve the detection accuracy. Then the small difference between the power waveforms is recognized by the back propagation neural network to achieve the purpose of detection. This method is validated on Advanced Encryption Standard circuit. Results show this method is able to identify the circuits with a Trojan occupied 0.19% of Advanced Encryption Standard circuit. And the detection accuracy rate can reach 100%.
Kurihara, Tatsuki, Togawa, Nozomu.  2021.  Hardware-Trojan Classification based on the Structure of Trigger Circuits Utilizing Random Forests. 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–4.
Recently, with the spread of Internet of Things (IoT) devices, embedded hardware devices have been used in a variety of everyday electrical items. Due to the increased demand for embedded hardware devices, some of the IC design and manufacturing steps have been outsourced to third-party vendors. Since malicious third-party vendors may insert malicious circuits, called hardware Trojans, into their products, developing an effective hardware Trojan detection method is strongly required. In this paper, we propose 25 hardware-Trojan features based on the structure of trigger circuits for machine-learning-based hardware Trojan detection. Combining the proposed features into 11 existing hardware-Trojan features, we totally utilize 36 hardware-Trojan features for classification. Then we classify the nets in an unknown netlist into a set of normal nets and Trojan nets based on the random-forest classifier. The experimental results demonstrate that the average true positive rate (TPR) becomes 63.6% and the average true negative rate (TNR) becomes 100.0%. They improve the average TPR by 14.7 points while keeping the average TNR compared to existing state-of-the-art methods. In particular, the proposed method successfully finds out Trojan nets in several benchmark circuits, which are not found by the existing method.
Shathanaa, R., Ramasubramanian, N..  2018.  Improving Power amp; Latency Metrics for Hardware Trojan Detection During High Level Synthesis. 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.

The globalization and outsourcing of the semiconductor industry has raised serious concerns about the trustworthiness of the hardware. Importing Third Party IP cores in the Integrated Chip design has opened gates for new form of attacks on hardware. Hardware Trojans embedded in Third Party IPs has necessitated the need for secure IC design process. Design-for-Trust techniques aimed at detection of Hardware Trojans come with overhead in terms of area, latency and power consumption. In this work, we present a Cuckoo Search algorithm based Design Space Exploration process for finding low cost hardware solutions during High Level Synthesis. The exploration is conducted with respect to datapath resource allocation for single and nested loops. The proposed algorithm is compared with existing Hardware Trojan detection mechanisms and experimental results show that the proposed algorithm is able to achieve 3x improvement in Cost when compared existing algorithms.

Hossain, F. S., Yoneda, T., Shintani, M., Inoue, M., Orailoglo, A..  2017.  Intra-Die-Variation-Aware Side Channel Analysis for Hardware Trojan Detection. 2017 IEEE 26th Asian Test Symposium (ATS). :52–57.

High detection sensitivity in the presence of process variation is a key challenge for hardware Trojan detection through side channel analysis. In this work, we present an efficient Trojan detection approach in the presence of elevated process variations. The detection sensitivity is sharpened by 1) comparing power levels from neighboring regions within the same chip so that the two measured values exhibit a common trend in terms of process variation, and 2) generating test patterns that toggle each cell multiple times to increase Trojan activation probability. Detection sensitivity is analyzed and its effectiveness demonstrated by means of RPD (relative power difference). We evaluate our approach on ISCAS'89 and ITC'99 benchmarks and the AES-128 circuit for both combinational and sequential type Trojans. High detection sensitivity is demonstrated by analysis on RPD under a variety of process variation levels and experiments for Trojan inserted circuits.

Zeng, Zitong, Li, Lei, Zhou, Wanting, Yang, Ji, He, Yuanhang.  2020.  IR-Drop Calibration for Hardware Trojan Detection. 2020 13th International Symposium on Computational Intelligence and Design (ISCID). :418–421.
Process variation is the critical issue in hardware Trojan detection. In the state-of-art works, ring oscillators are employed to address this problem. But ring oscillators are very sensitive to IR-drop effect, which exists ICs. In this paper, based on circuit theory, a IR-drop calibration method is proposed. The nominal power supply voltage and the others power supply voltage with a very small difference of the nominal power supply voltage are applied to the test chip. It is assumed that they have the same IR-drop $Δ$V. Combined with these measured data, the value of Vth + $Δ$V, can be obtained by mathematic analysis. The typical Vth from circuit simulation is used to compute $Δ$V. We studied the proposed method in a tested chip.
Jin, Chenglu, Ren, Lingyu, Liu, Xubin, Zhang, Peng, van Dijk, Marten.  2017.  Mitigating Synchronized Hardware Trojan Attacks in Smart Grids. Proceedings of the 2Nd Workshop on Cyber-Physical Security and Resilience in Smart Grids. :35–40.
A hardware Trojan is a malicious circuit inserted into a device by a malicious designer or manufacturer in the circuit design or fabrication phase. With the globalization of semiconductor industry, more and more chips and devices are designed, integrated and fabricated by untrusted manufacturers, who can potentially insert hardware Trojans for launching attacks after the devices are deployed. Moreover, the most damaging attack in a smart grid is a large scale electricity failure, which can cause very serious consequences that are worse than any disaster. Unfortunately, this attack can be implemented very easily by synchronized hardware Trojans acting as a collective offline time bomb; the Trojans do not need to interact with one another and can affect a large fraction of nodes in a power grid. More sophisticatedly, this attack can also be realized by online hardware Trojans which keep listening to the communication channel and wait for a trigger event to trigger their malicious payloads; here, a broadcast message triggers all the Trojans at the same time. In this paper, we address the offline synchronized hardware Trojan attack, as it does not require the adversary to penetrate the power grid network for sending triggers. We classify two types of offline synchronized hardware Trojan attacks as type A and B: type B requires communication between different nodes, and type A does not. The hardware Trojans needed for type B turn out to be much more complex (and therefore larger in area size) than those for type A. In order to prevent type A attacks we suggest to enforce each power grid node to work in an unique time domain which has a random time offset to Universal Coordinated Time (UTC). This isolation principle can mitigate type A offline synchronized hardware Trojan attacks in a smart grid, such that even if hardware Trojans are implanted in functional units, e.g. Phasor Measurement Units (PMUs) and Remote Terminal Units (RTUs), they can only cause a minimal damage, i.e. sporadic single node failures. The proposed solution only needs a trusted Global Positioning System (GPS) module which provides the correct UTC together with small additional interface circuitry. This means that our solution can be used to protect the current power grid infrastructure against type A offline attacks without replacing any untrusted functional unit, which may already have embedded hardware Trojans.
Zhang, Ning, Lv, Zhiqiang, Zhang, Yanlin, Li, Haiyang, Zhang, Yixin, Huang, Weiqing.  2020.  Novel Design of Hardware Trojan: A Generic Approach for Defeating Testability Based Detection. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :162–173.
Hardware design, especially the very large scale integration(VLSI) and systems on chip design(SOC), utilizes many codes from third-party intellectual property (IP) providers and former designers. Hardware Trojans (HTs) are easily inserted in this process. Recently researchers have proposed many HTs detection techniques targeting the design codes. State-of-art detections are based on the testability including Controllability and Observability, which are effective to all HTs from TrustHub, and advanced HTs like DeTrust. Meanwhile, testability based detections have advantages in the timing complexity and can be easily integrated into recently industrial verification. Undoubtedly, the adversaries will upgrade their designs accordingly to evade these detection techniques. Designing a variety of complex trojans is a significant way to perfect the existing detection, therefore, we present a novel design of HTs to defeat the testability based detection methods, namely DeTest. Our approach is simple and straight forward, yet it proves to be effective at adding some logic. Without changing HTs malicious function, DeTest decreases controllability and observability values to about 10% of the original, which invalidates distinguishers like clustering and support vector machines (SVM). As shown in our practical attack results, adversaries can easily use DeTest to upgrade their HTs to evade testability based detections. Combined with advanced HTs design techniques like DeTrust, DeTest can evade previous detecions, like UCI, VeriTrust and FANCI. We further discuss how to extend existing solutions to reduce the threat posed by DeTest.