Visible to the public Biblio

Found 474 results

Filters: First Letter Of Title is B  [Clear All Filters]
A [B] C D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
B
Hăjmăȿan, Gheorghe, Mondoc, Alexandra, Creț, Octavian.  2019.  Bytecode Heuristic Signatures for Detecting Malware Behavior. 2019 Conference on Next Generation Computing Applications (NextComp). :1–6.
For a long time, the most important approach for detecting malicious applications was the use of static, hash-based signatures. This approach provides a fast response time, has a low performance overhead and is very stable due to its simplicity. However, with the rapid growth in the number of malware, as well as their increased complexity in terms of polymorphism and evasion, the era of reactive security solutions started to fade in favor of new, proactive approaches such as behavior based detection. We propose a novel approach that uses an interpreter virtual machine to run proactive behavior heuristics from bytecode signatures, thus combining the advantages of behavior based detection with those of signatures. Based on our approximation, using this approach we succeeded to reduce by 85% the time required to update a behavior based detection solution to detect new threats, while continuing to benefit from the versatility of behavior heuristics.
He, Wei, Breier, Jakub, Bhasin, Shivam, Chattopadhyay, Anupam.  2016.  Bypassing Parity Protected Cryptography Using Laser Fault Injection in Cyber-Physical System. Proceedings of the 2Nd ACM International Workshop on Cyber-Physical System Security. :15–21.

Lightweight cryptography has been widely utilized in resource constrained embedded devices of Cyber-Physical System (CPS) terminals. The hostile and unattended environment in many scenarios make those endpoints easy to be attacked by hardware based techniques. As a resource-efficient countermeasure against Fault Attacks, parity Concurrent Error Detection (CED) is preferably integrated with security-critical algorithm in CPS terminals. The parity bit changes if an odd number of faults occur during the cipher execution. In this paper, we analyze the effectiveness of fault detection of a parity CED protected cipher (PRESENT) using laser fault injection. The experimental results show that the laser perturbation to encryption can easily flip an even number of data bits, where the faults cannot be detected by parity. Due to the similarity of different parity structures, our attack can bypass almost all parity protections in block ciphers. Some suggestions are given to enhance the security of parity implementations.

Mambretti, Andrea, Sandulescu, Alexandra, Sorniotti, Alessandro, Robertson, William, Kirda, Engin, Kurmus, Anil.  2021.  Bypassing memory safety mechanisms through speculative control flow hijacks. 2021 IEEE European Symposium on Security and Privacy (EuroS P). :633–649.
The prevalence of memory corruption bugs in the past decades resulted in numerous defenses, such as stack canaries, control flow integrity (CFI), and memory-safe languages. These defenses can prevent entire classes of vulnerabilities, and help increase the security posture of a program. In this paper, we show that memory corruption defenses can be bypassed using speculative execution attacks. We study the cases of stack protectors, CFI, and bounds checks in Go, demonstrating under which conditions they can be bypassed by a form of speculative control flow hijack, relying on speculative or architectural overwrites of control flow data. Information is leaked by redirecting the speculative control flow of the victim to a gadget accessing secret data and acting as a side channel send. We also demonstrate, for the first time, that this can be achieved by stitching together multiple gadgets, in a speculative return-oriented programming attack. We discuss and implement software mitigations, showing moderate performance impact.
Anderson, John, Huang, Qiqing, Cheng, Long, Hu, Hongxin.  2022.  BYOZ: Protecting BYOD Through Zero Trust Network Security. 2022 IEEE International Conference on Networking, Architecture and Storage (NAS). :1–8.
As the COVID-19 pandemic scattered businesses and their workforces into new scales of remote work, vital security concerns arose surrounding remote access. Bring Your Own Device (BYOD) also plays a growing role in the ability of companies to support remote workforces. As more enterprises embrace concepts of zero trust in their network security posture, access control policy management problems become a more significant concern as it relates to BYOD security enforcement. This BYOD security policy must enable work from home, but enterprises have a vested interest in maintaining the security of their assets. Therefore, the BYOD security policy must strike a balance between access, security, and privacy, given the personal device use. This paper explores the challenges and opportunities of enabling zero trust in BYOD use cases. We present a BYOD policy specification to enable the zero trust access control known as BYOZ. Accompanying this policy specification, we have designed a network architecture to support enterprise zero trust BYOD use cases through the novel incorporation of continuous authentication & authorization enforcement. We evaluate our architecture through a demo implementation of BYOZ and demonstrate how it can meet the needs of existing enterprise networks using BYOD.
Mart\'ın-Ramos, Pablo, Susano, Maria, da Silva, Pedro S. Pereira, Silva, Manuela Ramos.  2017.  BYOD for Physics Lab: Studying Newton's Law of Cooling with a Smartphone. Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality. :63:1–63:5.

In this paper we discuss a simple and inexpensive method to introduce students to Newton's law of cooling using only their smartphones, according to the Bring-Your-Own-Device philosophy. A popular experiment in basic thermodynamics, both at a high-school and at University level, is the determination of the specific heat of solids and liquids using a water calorimeter, resourcing in many cases to a mercury thermometer. With our approach the analogical instrument is quickly turned into a digital device by analyzing the movement of the mercury with a video tracker. Thus, using very simple labware and the students' smartphones or tablets, it is possible to observe the decay behavior of the temperature of a liquid left to cool at room temperature. The dependence of the time constant with the mass and surface of the liquid can be easily probed, and the results of the different groups in the classroom can be brought together to observe the linear dependence1.

Barbàra, Fadi, Schifanella, Claudio.  2022.  BxTB: cross-chain exchanges of bitcoins for all Bitcoin wrapped tokens. 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA). :143–150.
While it is possible to exchange tokens whose smart contracts are on the same blockchain, cross-exchanging bitcoins for a Bitcoin wrapped token is still cumbersome. In particular, current methods of exchange are still custodial and perform privacy-threatening controls on the users in order to operate. To solve this problem we present BxTB: cross-chain exchanges of bitcoins for any Bitcoin wrapped tokens. BxTB lets users achieve that by bypassing the mint-and-burn paradigm of current wrapped tokens and cross-exchanging already minted tokens in a P2P way. Instead of relaying on HTLCs and the overhead of communication and slowness due to time-locks, we leverage Stateless SPVs, i.e. proof-of-inclusion of transactions in the Bitcoin chain validated through a smart contract deployed on the other blockchain. Furthermore, since this primitive has not been introduced in the academic literature yet, we formally introduce it and we prove its security.
Islam, Md Rofiqul, Cerny, Tomas.  2021.  Business Process Extraction Using Static Analysis. 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1202–1204.
Business process mining of a large-scale project has many benefits such as finding vulnerabilities, improving processes, collecting data for data science, generating more clear and simple representation, etc. The general way of process mining is to turn event data such as application logs into insights and actions. Observing logs broad enough to depict the whole business logic scenario of a large project can become very costly due to difficult environment setup, unavailability of users, presence of not reachable or hardly reachable log statements, etc. Using static source code analysis to extract logs and arranging them perfect runtime execution order is a potential way to solve the problem and reduce the business process mining operation cost.
Lang-Muhr, Christoph, Tjoa, Simon, Machherndl, Stefan, Haslinger, Daniel.  2022.  Business Continuity & Disaster Recovery A simulation game for holistic cyber security education. 2022 IEEE Global Engineering Education Conference (EDUCON). :1296—1302.
At the end of the IT Security degree program a simulation game is conducted to repeat and consolidate the core skills of a Bachelor’s graduate. The focus is not on teaching content, but on the application of already learned skills. The scenario shows the students the risks of a completely networked world, which has come to a complete standstill due to a catastrophe. The participants occupy in groups the predefined companies, which are assigned with the reconstruction of the communication infrastructure (the internet). This paper describes the preparation, technical and organizational implementation of the. Also, the most important conclusions drawn by the authors.
Dangiwa, Bello Ahmed, Kumar, Smitha S.  2018.  A Business Card Reader Application for iOS devices based on Tesseract. 2018 International Conference on Signal Processing and Information Security (ICSPIS). :1–4.
As the accessibility of high-resolution smartphone camera has increased and an improved computational speed, it is now convenient to build Business Card Readers on mobile phones. The project aims to design and develop a Business Card Reader (BCR) Application for iOS devices, using an open-source OCR Engine - Tesseract. The system accuracy was tested and evaluated using a dataset of 55 digital business cards obtained from an online repository. The accuracy result of the system was up to 74% in terms of both text recognition and data detection. A comparative analysis was carried out against a commercial business card reader application and our application performed vastly reasonable.
Jabrayilzade, Elgun, Evtikhiev, Mikhail, Tüzün, Eray, Kovalenko, Vladimir.  2022.  Bus Factor in Practice. 2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :97—106.

Bus factor is a metric that identifies how resilient is the project to the sudden engineer turnover. It states the minimal number of engineers that have to be hit by a bus for a project to be stalled. Even though the metric is often discussed in the community, few studies consider its general relevance. Moreover, the existing tools for bus factor estimation focus solely on the data from version control systems, even though there exists other channels for knowledge generation and distribution. With a survey of 269 engineers, we find that the bus factor is perceived as an important problem in collective development, and determine the highest impact channels of knowledge generation and distribution in software development teams. We also propose a multimodal bus factor estimation algorithm that uses data on code reviews and meetings together with the VCS data. We test the algorithm on 13 projects developed at JetBrains and compared its results to the results of the state-of-the-art tool by Avelino et al. against the ground truth collected in a survey of the engineers working on these projects. Our algorithm is slightly better in terms of both predicting the bus factor as well as key developers compared to the results of Avelino et al. Finally, we use the interviews and the surveys to derive a set of best practices to address the bus factor issue and proposals for the possible bus factor assessment tool.

Zou, Changwei, Xue, Jingling.  2020.  Burn After Reading: A Shadow Stack with Microsecond-level Runtime Rerandomization for Protecting Return Addresses**Thanks to all the reviewers for their valuable comments. This research is supported by an Australian Research Council grant (DP180104069).. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :258–270.
Return-oriented programming (ROP) is an effective code-reuse attack in which short code sequences (i.e., gadgets) ending in a ret instruction are found within existing binaries and then executed by taking control of the call stack. The shadow stack, control flow integrity (CFI) and code (re)randomization are three popular techniques for protecting programs against return address overwrites. However, existing runtime rerandomization techniques operate on concrete return addresses, requiring expensive pointer tracking. By adding one level of indirection, we introduce BarRA, the first shadow stack mechanism that applies continuous runtime rerandomization to abstract return addresses for protecting their corresponding concrete return addresses (protected also by CFI), thus avoiding expensive pointer tracking. As a nice side-effect, BarRA naturally combines the shadow stack, CFI and runtime rerandomization in the same framework. The key novelty of BarRA, however, is that once some abstract return addresses are leaked, BarRA will enforce the burn-after-reading property by rerandomizing the mapping from the abstract to the concrete return address space in the order of microseconds instead of seconds required for rerandomizing a concrete return address space. As a result, BarRA can be used as a superior replacement for the shadow stack, as demonstrated by comparing both using the 19 C/C++ benchmarks in SPEC CPU2006 (totalling 2,047,447 LOC) and analyzing a proof-of-concept attack, provided that we can tolerate some slight binary code size increases (by an average of 29.44%) and are willing to use 8MB of dedicated memory for holding up to 220 return addresses (on a 64-bit platform). Under an information leakage attack (for some return addresses), the shadow stack is always vulnerable but BarRA is significantly more resilient (by reducing an attacker's success rate to [1/(220)] on average). In terms of the average performance overhead introduced, both are comparable: 6.09% (BarRA) vs. 5.38% (the shadow stack).
Ho, Tsung-Yu, Chen, Wei-An, Huang, Chiung-Ying.  2020.  The Burden of Artificial Intelligence on Internal Security Detection. 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET). :148—150.
Our research team have devoted to extract internal malicious behavior by monitoring the network traffic for many years. We applied the deep learning approach to recognize the malicious patterns within network, but this methodology may lead to more works to examine the results from AI models production. Hence, this paper addressed the scenario to consider the burden of AI, and proposed an idea for long-term reliable detection in the future work.
Farag, Nadine, El-Seoud, Samir Abou, McKee, Gerard, Hassan, Ghada.  2019.  Bullying Hurts: A Survey on Non-Supervised Techniques for Cyber-Bullying Detection. Proceedings of the 2019 8th International Conference on Software and Information Engineering. :85–90.
The contemporary period is scarred by the predominant place of social media in everyday life. Despite social media being a useful tool for communication and social gathering it also offers opportunities for harmful criminal activities. One of these activities is cyber-bullying enabled through the abuse and mistreatment of the internet as a means of bullying others virtually. As a way of minimising this occurrence, research into computer-based researched is carried out to detect cyber-bullying by the scientific research community. An extensive literature search shows that supervised learning techniques are the most commonly used methods for cyber-bullying detection. However, some non-supervised techniques and other approaches have proven to be effective towards cyber-bullying detection. This paper, therefore, surveys recent research on non-supervised techniques and offers some suggestions for future research in textual-based cyber-bullying detection including detecting roles, detecting emotional state, automated annotation and stylometric methods.
Aghakhani, Hojjat, Meng, Dongyu, Wang, Yu-Xiang, Kruegel, Christopher, Vigna, Giovanni.  2021.  Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved Transferability. 2021 IEEE European Symposium on Security and Privacy (EuroS P). :159—178.
A recent source of concern for the security of neural networks is the emergence of clean-label dataset poisoning attacks, wherein correctly labeled poison samples are injected into the training dataset. While these poison samples look legitimate to the human observer, they contain malicious characteristics that trigger a targeted misclassification during inference. We propose a scalable and transferable clean-label poisoning attack against transfer learning, which creates poison images with their center close to the target image in the feature space. Our attack, Bullseye Polytope, improves the attack success rate of the current state-of-the-art by 26.75% in end-to-end transfer learning, while increasing attack speed by a factor of 12. We further extend Bullseye Polytope to a more practical attack model by including multiple images of the same object (e.g., from different angles) when crafting the poison samples. We demonstrate that this extension improves attack transferability by over 16% to unseen images (of the same object) without using extra poison samples.
Kawasaki, Shinnosuke, Yeh, Jia–Jun, Saccher, Marta, Li, Jian, Dekker, Ronald.  2022.  Bulk Acoustic Wave Based Mocrfluidic Particle Sorting with Capacitive Micromachined Ultrasonic Transducers. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS). :908—911.
The main limitation of acoustic particle separation for microfluidic application is its low sorting efficiency. This is due to the weak coupling of surface acoustic waves (SAWs) into the microchannel. In this work, we demonstrate bulk acoustic wave (BAW) particle sorting using capacitive micromachined ultrasonic transducers (CMUTs) for the first time. A collapsed mode CMUT was driven in air to generate acoustic pressure within the silicon substrate in the in-plane direction of the silicon die. This acoustic pressure was coupled into a water droplet, positioned at the side of the CMUT die, and measured with an optical hydrophone. By using a beam steering approach, the ultrasound generated from 32 CMUT elements were added in-phase to generate a maximum peak-to-peak pressure of 0.9 MPa. Using this pressure, 10 µm latex beads were sorted almost instantaneously.
Zhu, Pengfei, Cui, Jiabin, Ji, Yuefeng.  2020.  A Built-in Hash Permutation Assisted Cross-layer Secure Transport in End-to-End FlexE over WDM Networks. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1—5.

With the traffic growth with different deterministic transport and isolation requirements in radio access networks (RAN), Flexible Ethernet (FlexE) over wavelength division multiplexing (WDM) network is as a candidate for next generation RAN transport, and the security issue in RAN transport is much more obvious, especially the eavesdropping attack in physical layer. Therefore, in this work, we put forward a cross-layer design for security enhancement through leveraging universal Hashing based FlexE data block permutation and multiple parallel fibre transmission for anti-eavesdropping in end-to-end FlexE over WDM network. Different levels of attack ability are considered for measuring the impact on network security and resource utilization. Furthermore, the trade-off problem between efficient resource utilization and guarantee of higher level of security is also explored. Numerical results demonstrate the cross-layer defense strategies are effective to struggle against intruders with different levels of attack ability.

Afshari, Mehrdad, Su, Zhendong.  2016.  Building White-box Abstractions by Program Refinement. Proceedings of the 2016 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software. :74–81.

Abstractions make building complex systems possible. Many facilities provided by a modern programming language are directly designed to build a certain style of abstraction. Abstractions also aim to enhance code reusability, thus enhancing programmer productivity and effectiveness. Real-world software systems can grow to have a complicated hierarchy of abstractions. Often, the hierarchy grows unnecessarily deep, because the programmers have envisioned the most generic use cases for a piece of code to make it reusable. Sometimes, the abstractions used in the program are not the appropriate ones, and it would be simpler for the higher level client to circumvent such abstractions. Another problem is the impedance mismatch between different pieces of code or libraries coming from different projects that are not designed to work together. Interoperability between such libraries are often hindered by abstractions, by design, in the name of hiding implementation details and encapsulation. These problems necessitate forms of abstraction that are easy to manipulate if needed. In this paper, we describe a powerful mechanism to create white-box abstractions, that encourage flatter hierarchies of abstraction and ease of manipulation and customization when necessary: program refinement. In so doing, we rely on the basic principle that writing directly in the host programming language is as least restrictive as one can get in terms of expressiveness, and allow the programmer to reuse and customize existing code snippets to address their specific needs.

Bian, R., Xue, M., Wang, J..  2018.  Building Trusted Golden Models-Free Hardware Trojan Detection Framework Against Untrustworthy Testing Parties Using a Novel Clustering Ensemble Technique. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1458-1463.

As a result of the globalization of integrated circuits (ICs) design and fabrication process, ICs are becoming vulnerable to hardware Trojans. Most of the existing hardware Trojan detection works suppose that the testing stage is trustworthy. However, testing parties may conspire with malicious attackers to modify the results of hardware Trojan detection. In this paper, we propose a trusted and robust hardware Trojan detection framework against untrustworthy testing parties exploiting a novel clustering ensemble method. The proposed technique can expose the malicious modifications on Trojan detection results introduced by untrustworthy testing parties. Compared with the state-of-the-art detection methods, the proposed technique does not require fabricated golden chips or simulated golden models. The experiment results on ISCAS89 benchmark circuits show that the proposed technique can resist modifications robustly and detect hardware Trojans with decent accuracy (up to 91%).

Kounelis, I., Baldini, G., Neisse, R., Steri, G., Tallacchini, M., Guimaraes Pereira, A..  2014.  Building Trust in the Human?Internet of Things Relationship Technology and Society Magazine, IEEE. 33:73-80.

Our vision in this paper is that agency, as the individual ability to intervene and tailor the system, is a crucial element in building trust in IoT technologies. Following up on this vision, we will first address the issue of agency, namely the individual capability to adopt free decisions, as a relevant driver in building trusted human-IoT relations, and how agency should be embedded in digital systems. Then we present the main challenges posed by existing approaches to implement this vision. We show then our proposal for a model-based approach that realizes the agency concept, including a prototype implementation.

Matsui, Tetsuya, Yamada, Seiji.  2016.  Building Trust in PRVAs by User Inner State Transition Through Agent State Transition. Proceedings of the Fourth International Conference on Human Agent Interaction. :111–114.

In this research, we aim to suggest a method for designing trustworthy PRVAs (product recommendation virtual agents). We define an agent's trustworthiness as being operated by user emotion and knowledgeableness perceived by humans. Also, we suggest a user inner state transition model for increasing trust. To increase trust, we aim to cause user emotion to transition to positive by using emotional contagion and to cause user knowledgeableness perceived to become higher by increasing an agent's knowledge. We carried out two experiments to inspect this model. In experiment 1, the PRVAs recommended package tours and became highly knowledgeable in the latter half of ten recommendations. In experiment 2, the PRVAs recommended the same package tours and expressed a positive emotion in the latter half. As a result, participants' inner states transitioned as we expected, and it was proved that this model was valuable for PRVA recommendation.

Forget, Alain, Komanduri, Saranga, Acquisti, Alessandro, Christin, Nicolas, Cranor, Lorrie Faith, Telang, Rahul.  2014.  Building the Security Behavior Observatory: An Infrastructure for Long-term Monitoring of Client Machines. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :24:1–24:2.

We present an architecture for the Security Behavior Observatory (SBO), a client-server infrastructure designed to collect a wide array of data on user and computer behavior from hundreds of participants over several years. The SBO infrastructure had to be carefully designed to fulfill several requirements. First, the SBO must scale with the desired length, breadth, and depth of data collection. Second, we must take extraordinary care to ensure the security of the collected data, which will inevitably include intimate participant behavioral data. Third, the SBO must serve our research interests, which will inevitably change as collected data is analyzed and interpreted. This short paper summarizes some of our design and implementation benefits and discusses a few hurdles and trade-offs to consider when designing such a data collection system.

Vo, Khoa Tan, Nguyen-Thi, Anh-Thu, Nguyen-Hoang, Tu-Anh.  2021.  Building Sustainable Food Supply Chain Management System Based On Hyperledger Fabric Blockchain. 2021 15th International Conference on Advanced Computing and Applications (ACOMP). :9—16.

Quality assurance and food safety are the most problem that the consumers are special care. To solve this problem, the enterprises must improve their food supply chain management system. In addition to tracking and storing orders and deliveries, it also ensures transparency and traceability of food production and transportation. This is a big challenge that the food supply chain system using the client-server model cannot meet with the requirements. Blockchain was first introduced to provide distributed records of digital currency exchanges without reliance on centralized management agencies or financial institutions. Blockchain is a disruptive technology that can improve supply chain related transactions, enable to access data permanently, data security, and provide a distributed database. In this paper, we propose a method to design a food supply chain management system base on Blockchain technology that is capable of bringing consumers’ trust in food traceability as well as providing a favorable supply and transaction environment. Specifically, we design a system architecture that is capable of controlling and tracking the entire food supply chain, including production, processing, transportation, storage, distribution, and retail. We propose the KDTrace system model and the Channel of KDTrace network model. The Smart contract between the organizations participating in the transaction is implemented in the Channel of KDTrace network model. Therefore, our supply chain system can decrease the problem of data explosion, prevent data tampering and disclosure of sensitive information. We have built a prototype based on Hyperledger Fabric Blockchain. Through the prototype, we demonstrated the effectiveness of our method and the suitability of the use cases in a supply chain. Our method that uses Blockchain technology can improve efficiency and security of the food supply chain management system compared with traditional systems, which use a clientserver model.

Jha, Sagar, Behrens, Jonathan, Gkountouvas, Theo, Milano, Matthew, Song, Weijia, Tremel, Edward, Zink, Sydney, Birman, Ken, van Renesse, Robbert.  2017.  Building Smart Memories and High-speed Cloud Services for the Internet of Things with Derecho. Proceedings of the 2017 Symposium on Cloud Computing. :632–632.
The coming generation of Internet-of-Things (IoT) applications will process massive amounts of incoming data while supporting data mining and online learning. In cases with demanding real-time requirements, such systems behave as smart memories: a high-bandwidth service that captures sensor input, processes it using machine-learning tools, replicates and stores "interesting" data (discarding uninteresting content), updates knowledge models, and triggers urgently-needed responses. Derecho is a high-throughput library for building smart memories and similar services. At its core Derecho implements atomic multicast (Vertical Paxos) and state machine replication (the classic durable Paxos). Derecho's replicated\textbackslashtextlessT\textbackslashtextgreater template defines a replicated type; the corresponding objects are associated with subgroups, which can be sharded into key-value structures. The persistent\textbackslashtextlessT\textbackslashtextgreater and volatile\textbackslashtextlessT\textbackslashtextgreater storage templates implement version vectors with optional NVM persistence. These support time-indexed access, offering lock-free snapshot isolation that blends temporal precision and causal consistency. Derecho automates application management, supporting multigroup structures and providing consistent knowledge of the current membership mapping. A query can access data from many shards or subgroups, and consistency is guaranteed without any form of distributed locking. Whereas many systems run consensus on the critical path, Derecho requires consensus only when updating membership. By leveraging an RDMA data plane and NVM storage, and adopting a novel receiver-side batching technique, Derecho can saturate a 12.5GB RDMA network, sending millions of events per second in each subgroup or shard. In a single subgroup with 2–16 members, through-put peaks at 16 GB/s for large (100MB or more) objects. While key-value subgroups would typically use 2 or 3-member shards, unsharded subgroups could be large. In tests with a 128-member group, Derecho's multicast and Paxos protocols were just 3–5x slower than for a small group, depending on the traffic pattern. With network contention, slow members, or overlapping groups that generate concurrent traffic, Derecho's protocols remain stable and adapt to the available bandwidth.
Giang, Nam K., Lea, Rodger, Blackstock, Michael, Leung, Victor C. M..  2016.  On Building Smart City IoT Applications: A Coordination-based Perspective. Proceedings of the 2Nd International Workshop on Smart. :7:1–7:6.

In the Internet of Things (IoT), Internet-connected things provide an influx of data and resources that offer unlimited possibility for applications and services. Smart City IoT systems refer to the things that are distributed over wide physical areas covering a whole city. While the new breed of data and resources looks promising, building applications in such large scale IoT systems is a difficult task due to the distributed and dynamic natures of entities involved, such as sensing, actuating devices, people and computing resources. In this paper, we explore the process of developing Smart City IoT applications from a coordination-based perspective. We show that a distributed coordination model that oversees such a large group of distributed components is necessary in building Smart City IoT applications. In particular, we propose Adaptive Distributed Dataflow, a novel Dataflow-based programming model that focuses on coordinating city-scale distributed systems that are highly heterogeneous and dynamic.

Cuong Pham, University of Illinois at Urbana-Champaign, Zachary J. Estrada, University of Illinois at Urbana-Champaign, Phuong Cao, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar K. Iyer, University of Illinois at Urbana-Champaign.  2014.  Building Reliable and Secure Virtual Machines using Architectural Invariants. IEEE Security and Privacy. 12(5):82-85.

Reliability and security tend to be treated separately because they appear orthogonal: reliability focuses on accidental failures, security on intentional attacks. Because of the apparent dissimilarity between the two, tools to detect and recover from different classes of failures and attacks are usually designed and implemented differently. So, integrating support for reliability and security in a single framework is a significant challenge.

Here, we discuss how to address this challenge in the context of cloud computing, for which reliability and security are growing concerns. Because cloud deployments usually consist of commodity hardware and software, efficient monitoring is key to achieving resiliency. Although reliability and security monitoring might use different types of analytics, the same sensing infrastructure can provide inputs to monitoring modules.

We split monitoring into two phases: logging and auditing. Logging captures data or events; it constitutes the framework’s core and is common to all monitors. Auditing analyzes data or events; it’s implemented and operated independently by each monitor. To support a range of auditing policies, logging must capture a complete view, including both actions and states of target systems. It must also provide useful, trustworthy information regarding the captured view.

We applied these principles when designing HyperTap, a hypervisor-level monitoring framework for virtual machines (VMs). Unlike most VM-monitoring techniques, HyperTap employs hardware architectural invariants (hardware invariants, for short) to establish the root of trust for logging. Hardware invariants are properties defined and enforced by a hardware platform (for example, the x86 instruction set architecture). Additionally, HyperTap supports continuous, event-driven VM monitoring, which enables both capturing the system state and responding rapidly to actions of interest.