La Manna, Michele, Perazzo, Pericle, Rasori, Marco, Dini, Gianluca.
2019.
fABElous: An Attribute-Based Scheme for Industrial Internet of Things. 2019 IEEE International Conference on Smart Computing (SMARTCOMP). :33–38.
The Internet of Things (IoT) is a technological vision in which constrained or embedded devices connect together through the Internet. This enables common objects to be empowered with communication and cooperation capabilities. Industry can take an enormous advantage of IoT, leading to the so-called Industrial IoT. In these systems, integrity, confidentiality, and access control over data are key requirements. An emerging approach to reach confidentiality and access control is Attribute-Based Encryption (ABE), which is a technique able to enforce cryptographically an access control over data. In this paper, we propose fABElous, an ABE scheme suitable for Industrial IoT applications which aims at minimizing the overhead of encryption on communication. fABElous ensures data integrity, confidentiality, and access control, while reducing the communication overhead of 35% with respect to using ABE techniques naively.
Tsoutsos, N.G., Maniatakos, M..
2014.
Fabrication Attacks: Zero-Overhead Malicious Modifications Enabling Modern Microprocessor Privilege Escalation. Emerging Topics in Computing, IEEE Transactions on. 2:81-93.
The wide deployment of general purpose and embedded microprocessors has emphasized the need for defenses against cyber-attacks. Due to the globalized supply chain, however, there are several stages where a processor can be maliciously modified. The most promising stage, and the hardest during which to inject the hardware trojan, is the fabrication stage. As modern microprocessor chips are characterized by very dense, billion-transistor designs, such attacks must be very carefully crafted. In this paper, we demonstrate zero overhead malicious modifications on both high-performance and embedded microprocessors. These hardware trojans enable privilege escalation through execution of an instruction stream that excites the necessary conditions to make the modification appear. The minimal footprint, however, comes at the cost of a small window of attack opportunities. Experimental results show that malicious users can gain escalated privileges within a few million clock cycles. In addition, no system crashes were reported during normal operation, rendering the modifications transparent to the end user.
Chi, H., Hu, Y. H..
2015.
Face de-identification using facial identity preserving features. 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :586–590.
Automated human facial image de-identification is a much needed technology for privacy-preserving social media and intelligent surveillance applications. Other than the usual face blurring techniques, in this work, we propose to achieve facial anonymity by slightly modifying existing facial images into "averaged faces" so that the corresponding identities are difficult to uncover. This approach preserves the aesthesis of the facial images while achieving the goal of privacy protection. In particular, we explore a deep learning-based facial identity-preserving (FIP) features. Unlike conventional face descriptors, the FIP features can significantly reduce intra-identity variances, while maintaining inter-identity distinctions. By suppressing and tinkering FIP features, we achieve the goal of k-anonymity facial image de-identification while preserving desired utilities. Using a face database, we successfully demonstrate that the resulting "averaged faces" will still preserve the aesthesis of the original images while defying facial image identity recognition.
Patoliya, J. J., Desai, M. M..
2017.
Face detection based ATM security system using embedded Linux platform. 2017 2nd International Conference for Convergence in Technology (I2CT). :74–78.
In order to provide reliable security solution to the people, the concept of smart ATM security system based on Embedded Linux platform is suggested in this paper. The study is focused on Design and Implementation of Face Detection based ATM Security System using Embedded Linux Platform. The system is implemented on the credit card size Raspberry Pi board with extended capability of open source Computer Vision (OpenCV) software which is used for Image processing operation. High level security mechanism is provided by the consecutive actions such as initially system captures the human face and check whether the human face is detected properly or not. If the face is not detected properly, it warns the user to adjust him/her properly to detect the face. Still the face is not detected properly the system will lock the door of the ATM cabin for security purpose. As soon as the door is lock, the system will automatic generates 3 digit OTP code. The OTP code will be sent to the watchman's registered mobile number through SMS using GSM module which is connected with the raspberry Pi. Watchman will enter the generated OTP through keypad which is interfaced with the Pi Board. The OTP will be verified and if it is correct then door will be unlock otherwise it will remain lock.
Feng, Ranran, Prabhakaran, Balakrishnan.
2016.
On the "Face of Things". Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval. :3–4.
Face is crucial for human identity, while face identification has become crucial to information security. It is important to understand and work with the problems and challenges for all different aspects of facial feature extraction and face identification. In this tutorial, we identify and discuss four research challenges in current Face Detection/Recognition research and related research areas: (1) Unavoidable Facial Feature Alterations, (2) Voluntary Facial Feature Alterations, (3) Uncontrolled Environments, and (4) Accuracy Control on Large-scale Dataset. We also direct several different applications (spin-offs) of facial feature studies in the tutorial.
Zhang, T., Wang, R., Ding, J., Li, X., Li, B..
2018.
Face Recognition Based on Densely Connected Convolutional Networks. 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). :1–6.
The face recognition methods based on convolutional neural network have achieved great success. The existing model usually used the residual network as the core architecture. The residual network is good at reusing features, but it is difficult to explore new features. And the densely connected network can be used to explore new features. We proposed a face recognition model named Dense Face to explore the performance of densely connected network in face recognition. The model is based on densely connected convolutional neural network and composed of Dense Block layers, transition layers and classification layer. The model was trained with the joint supervision of center loss and softmax loss through feature normalization and enabled the convolutional neural network to learn more discriminative features. The Dense Face model was trained using the public available CASIA-WebFace dataset and was tested on the LFW and the CAS-PEAL-Rl datasets. Experimental results showed that the densely connected convolutional neural network has achieved higher face verification accuracy and has better robustness than other model such as VGG Face and ResNet model.
Azhari Halim, Muhammad Arif, Othman, Mohd. Fairuz Iskandar, Abidin, Aa Zezen Zaenal, Hamid, Erman, Harum, Norharyati, Shah, Wahidah Md.
2021.
Face Recognition-based Door Locking System with Two-Factor Authentication Using OpenCV. 2021 Sixth International Conference on Informatics and Computing (ICIC). :1—7.
This project develops a face recognition-based door locking system with two-factor authentication using OpenCV. It uses Raspberry Pi 4 as the microcontroller. Face recognition-based door locking has been around for many years, but most of them only provide face recognition without any added security features, and they are costly. The design of this project is based on human face recognition and the sending of a One-Time Password (OTP) using the Twilio service. It will recognize the person at the front door. Only people who match the faces stored in its dataset and then inputs the correct OTP will have access to unlock the door. The Twilio service and image processing algorithm Local Binary Pattern Histogram (LBPH) has been adopted for this system. Servo motor operates as a mechanism to access the door. Results show that LBPH takes a short time to recognize a face. Additionally, if an unknown face is detected, it will log this instance into a "Fail" file and an accompanying CSV sheet.
Amato, Giuseppe, Falchi, Fabrizio, Gennaro, Claudio, Massoli, Fabio Valerio, Passalis, Nikolaos, Tefas, Anastasios, Trivilini, Alessandro, Vairo, Claudio.
2019.
Face Verification and Recognition for Digital Forensics and Information Security. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1—6.
In this paper, we present an extensive evaluation of face recognition and verification approaches performed by the European COST Action MULTI-modal Imaging of FOREnsic SciEnce Evidence (MULTI-FORESEE). The aim of the study is to evaluate various face recognition and verification methods, ranging from methods based on facial landmarks to state-of-the-art off-the-shelf pre-trained Convolutional Neural Networks (CNN), as well as CNN models directly trained for the task at hand. To fulfill this objective, we carefully designed and implemented a realistic data acquisition process, that corresponds to a typical face verification setup, and collected a challenging dataset to evaluate the real world performance of the aforementioned methods. Apart from verifying the effectiveness of deep learning approaches in a specific scenario, several important limitations are identified and discussed through the paper, providing valuable insight for future research directions in the field.
Sun, Lanxin, Dai, JunBo, Shen, Xunbing.
2021.
Facial emotion recognition based on LDA and Facial Landmark Detection. 2021 2nd International Conference on Artificial Intelligence and Education (ICAIE). :64—67.
Emotion recognition in the field of human-computer interaction refers to that the computer has the corresponding perceptual ability to predict the emotional state of human beings in advance by observing human expressions, behaviors and emotions, so as to ensure that computers can communicate emotionally with humans. The main research work of this paper is to extract facial image features by using Linear Discriminant Analysis (LDA) and Facial Landmark Detection after grayscale processing and cropping, and then compare the accuracy after emotion recognition and classification to determine which feature extraction method is more effective. The test results show that the accuracy rate of emotion recognition in face images can reach 73.9% by using LDA method, and 84.5% by using Facial Landmark Detection method. Therefore, facial landmarks can be used to identify emotion in face images more accurately.
Arabian, H., Wagner-Hartl, V., Geoffrey Chase, J., Möller, K..
2021.
Facial Emotion Recognition Focused on Descriptive Region Segmentation. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). :3415—3418.
Facial emotion recognition (FER) is useful in many different applications and could offer significant benefit as part of feedback systems to train children with Autism Spectrum Disorder (ASD) who struggle to recognize facial expressions and emotions. This project explores the potential of real time FER based on the use of local regions of interest combined with a machine learning approach. Histogram of Oriented Gradients (HOG) was implemented for feature extraction, along with 3 different classifiers, 2 based on k-Nearest Neighbor and 1 using Support Vector Machine (SVM) classification. Model performance was compared using accuracy of randomly selected validation sets after training on random training sets of the Oulu-CASIA database. Image classes were distributed evenly, and accuracies of up to 98.44% were observed with small variation depending on data distributions. The region selection methodology provided a compromise between accuracy and number of extracted features, and validated the hypothesis a focus on smaller informative regions performs just as well as the entire image.
Pranav, E., Kamal, S., Chandran, C. Satheesh, Supriya, M. H..
2020.
Facial Emotion Recognition Using Deep Convolutional Neural Network. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :317—320.
The rapid growth of artificial intelligence has contributed a lot to the technology world. As the traditional algorithms failed to meet the human needs in real time, Machine learning and deep learning algorithms have gained great success in different applications such as classification systems, recommendation systems, pattern recognition etc. Emotion plays a vital role in determining the thoughts, behaviour and feeling of a human. An emotion recognition system can be built by utilizing the benefits of deep learning and different applications such as feedback analysis, face unlocking etc. can be implemented with good accuracy. The main focus of this work is to create a Deep Convolutional Neural Network (DCNN) model that classifies 5 different human facial emotions. The model is trained, tested and validated using the manually collected image dataset.
R, Sowmiya, G, Sivakamasundari, V, Archana.
2022.
Facial Emotion Recognition using Deep Learning Approach. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS). :1064—1069.
Human facial emotion recognition pays a variety of applications in society. The basic idea of Facial Emotion Recognition is to map the different facial emotions to a variety of emotional states. Conventional Facial Emotion Recognition consists of two processes: extracting the features and feature selection. Nowadays, in deep learning algorithms, Convolutional Neural Networks are primarily used in Facial Emotion Recognition because of their hidden feature extraction from the images. Usually, the standard Convolutional Neural Network has simple learning algorithms with finite feature extraction layers for extracting information. The drawback of the earlier approach was that they validated only the frontal view of the photos even though the image was obtained from different angles. This research work uses a deep Convolutional Neural Network along with a DenseNet-169 as a backbone network for recognizing facial emotions. The emotion Recognition dataset was used to recognize the emotions with an accuracy of 96%.
Shiomi, Takanori, Nomiya, Hiroki, Hochin, Teruhisa.
2022.
Facial Expression Intensity Estimation Considering Change Characteristic of Facial Feature Values for Each Facial Expression. 2022 23rd ACIS International Summer Virtual Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Summer). :15—21.
Facial expression intensity, which quantifies the degree of facial expression, has been proposed. It is calculated based on how much facial feature values change compared to an expressionless face. The estimation has two aspects. One is to classify facial expressions, and the other is to estimate their intensity. However, it is difficult to do them at the same time. There- fore, in this work, the estimation of intensity and the classification of expression are separated. We suggest an explicit method and an implicit method. In the explicit one, a classifier determines which types of expression the inputs are, and each regressor determines its intensity. On the other hand, in the implicit one, we give zero values or non-zero values to regressors for each type of facial expression as ground truth, depending on whether or not an input image is the correct facial expression. We evaluated the two methods and, as a result, found that they are effective for facial expression recognition.
Nakashima, Y., Koyama, T., Yokoya, N., Babaguchi, N..
2015.
Facial expression preserving privacy protection using image melding. 2015 IEEE International Conference on Multimedia and Expo (ICME). :1–6.
An enormous number of images are currently shared through social networking services such as Facebook. These images usually contain appearance of people and may violate the people's privacy if they are published without permission from each person. To remedy this privacy concern, visual privacy protection, such as blurring, is applied to facial regions of people without permission. However, in addition to image quality degradation, this may spoil the context of the image: If some people are filtered while the others are not, missing facial expression makes comprehension of the image difficult. This paper proposes an image melding-based method that modifies facial regions in a visually unintrusive way with preserving facial expression. Our experimental results demonstrated that the proposed method can retain facial expression while protecting privacy.
Yang, Xinli, Li, Ming, Zhao, ShiLin.
2017.
Facial Expression Recognition Algorithm Based on CNN and LBP Feature Fusion. Proceedings of the 2017 International Conference on Robotics and Artificial Intelligence. :33–38.
When a complex scene such as rotation within a plane is encountered, the recognition rate of facial expressions will decrease much. A facial expression recognition algorithm based on CNN and LBP feature fusion is proposed in this paper. Firstly, according to the problem of the lack of feature expression ability of CNN in the process of expression recognition, a CNN model was designed. The model is composed of structural units that have two successive convolutional layers followed by a pool layer, which can improve the expressive ability of CNN. Then, the designed CNN model was used to extract the facial expression features, and local binary pattern (LBP) features with rotation invariance were fused. To a certain extent, it makes up for the lack of CNN sensitivity to in-plane rotation changes. The experimental results show that the proposed method improves the expression recognition rate under the condition of plane rotation to a certain extent and has better robustness.
Yang, Jiannan, Zhang, Fan, Chen, Bike, Khan, Samee U..
2019.
Facial Expression Recognition Based on Facial Action Unit. 2019 Tenth International Green and Sustainable Computing Conference (IGSC). :1—6.
In the past few years, there has been increasing interest in the perception of human expressions and mental states by machines, and Facial Expression Recognition (FER) has attracted increasing attention. Facial Action Unit (AU) is an early proposed method to describe facial muscle movements, which can effectively reflect the changes in people's facial expressions. In this paper, we propose a high-performance facial expression recognition method based on facial action unit, which can run on low-configuration computer and realize video and real-time camera FER. Our method is mainly divided into two parts. In the first part, 68 facial landmarks and image Histograms of Oriented Gradients (HOG) are obtained, and the feature values of action units are calculated accordingly. The second part uses three classification methods to realize the mapping from AUs to FER. We have conducted many experiments on the popular human FER benchmark datasets (CK+ and Oulu CASIA) to demonstrate the effectiveness of our method.
Xu, X., Ruan, Z., Yang, L..
2020.
Facial Expression Recognition Based on Graph Neural Network. 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC). :211—214.
Facial expressions are one of the most powerful, natural and immediate means for human being to present their emotions and intensions. In this paper, we present a novel method for fully automatic facial expression recognition. The facial landmarks are detected for characterizing facial expressions. A graph convolutional neural network is proposed for feature extraction and facial expression recognition classification. The experiments were performed on the three facial expression databases. The result shows that the proposed FER method can achieve good recognition accuracy up to 95.85% using the proposed method.
Liu, Peng, Zhao, Siqi, Li, Songbin.
2017.
Facial Expression Recognition Based On Hierarchical Feature Learning. Proceedings of the 2017 2Nd International Conference on Communication and Information Systems. :309–313.
Facial expression recognition is a challenging problem in the field of computer vision. In this paper, we propose a deep learning approach that can learn the joint low-level and high-level features of human face to resolve this problem. Our deep neural networks utilize convolution and downsampling to extract the abstract and local features of human face, and reconstruct the raw input images to learn global features as supplementary information at the same time. We also add an adjustable weight in the networks when combining the two kinds of features for the final classification. The experimental results show that the proposed method can achieve good results, which has an average recognition accuracy of 93.65% on the test datasets.
Jia, C., Li, C. L., Ying, Z..
2020.
Facial expression recognition based on the ensemble learning of CNNs. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1—5.
As a part of body language, facial expression is a psychological state that reflects the current emotional state of the person. Recognition of facial expressions can help to understand others and enhance communication with others. We propose a facial expression recognition method based on convolutional neural network ensemble learning in this paper. Our model is composed of three sub-networks, and uses the SVM classifier to Integrate the output of the three networks to get the final result. The recognition accuracy of the model's expression on the FER2013 dataset reached 71.27%. The results show that the method has high test accuracy and short prediction time, and can realize real-time, high-performance facial recognition.
Pan, Bowen, Wang, Shangfei.
2018.
Facial Expression Recognition Enhanced by Thermal Images Through Adversarial Learning. Proceedings of the 26th ACM International Conference on Multimedia. :1346–1353.
Currently, fusing visible and thermal images for facial expression recognition requires two modalities during both training and testing. Visible cameras are commonly used in real-life applications, and thermal cameras are typically only available in lab situations due to their high price. Thermal imaging for facial expression recognition is not frequently used in real-world situations. To address this, we propose a novel thermally enhanced facial expression recognition method which uses thermal images as privileged information to construct better visible feature representation and improved classifiers by incorporating adversarial learning and similarity constraints during training. Specifically, we train two deep neural networks from visible images and thermal images. We impose adversarial loss to enforce statistical similarity between the learned representations of two modalities, and a similarity constraint to regulate the mapping functions from visible and thermal representation to expressions. Thus, thermal images are leveraged to simultaneously improve visible feature representation and classification during training. To mimic real-world scenarios, only visible images are available during testing. We further extend the proposed expression recognition method for partially unpaired data to explore thermal images' supplementary role in visible facial expression recognition when visible images and thermal images are not synchronously recorded. Experimental results on the MAHNOB Laughter database demonstrate that our proposed method can effectively regularize visible representation and expression classifiers with the help of thermal images, achieving state-of-the-art recognition performance.
Liu, Weida, Fang, Jian.
2021.
Facial Expression Recognition Method Based on Cascade Convolution Neural Network. 2021 International Wireless Communications and Mobile Computing (IWCMC). :1012—1015.
In view of the problem that the convolution neural network research of facial expression recognition ignores the internal relevance of the key links, which leads to the low accuracy and speed of facial expression recognition, and can't meet the recognition requirements, a series cascade algorithm model for expression recognition of educational robot is constructed and enables the educational robot to recognize multiple students' facial expressions simultaneously, quickly and accurately in the process of movement, in the balance of the accuracy, rapidity and stability of the algorithm, based on the cascade convolution neural network model. Through the CK+ and Oulu-CASIA expression recognition database, the expression recognition experiments of this algorithm are compared with the commonly used STM-ExpLet and FN2EN cascade network algorithms. The results show that the accuracy of the expression recognition method is more than 90%. Compared with the other two commonly used cascade convolution neural network methods, the accuracy of expression recognition is significantly improved.
Sadikoğlu, Fahreddin M., Idle Mohamed, Mohamed.
2022.
Facial Expression Recognition Using CNN. 2022 International Conference on Artificial Intelligence in Everything (AIE). :95—99.
Facial is the most dynamic part of the human body that conveys information about emotions. The level of diversity in facial geometry and facial look makes it possible to detect various human expressions. To be able to differentiate among numerous facial expressions of emotion, it is crucial to identify the classes of facial expressions. The methodology used in this article is based on convolutional neural networks (CNN). In this paper Deep Learning CNN is used to examine Alex net architectures. Improvements were achieved by applying the transfer learning approach and modifying the fully connected layer with the Support Vector Machine(SVM) classifier. The system succeeded by achieving satisfactory results on icv-the MEFED dataset. Improved models achieved around 64.29 %of recognition rates for the classification of the selected expressions. The results obtained are acceptable and comparable to the relevant systems in the literature provide ideas a background for further improvements.
Saboor khan, Abdul, Shafi, Imran, Anas, Muhammad, Yousuf, Bilal M, Abbas, Muhammad Jamshed, Noor, Aqib.
2019.
Facial Expression Recognition using Discrete Cosine Transform Artificial Neural Network. 2019 22nd International Multitopic Conference (INMIC). :1—5.
Every so often Humans utilize non-verbal gestures (e.g. facial expressions) to express certain information or emotions. Moreover, countless face gestures are expressed throughout the day because of the capabilities possessed by humans. However, the channels of these expression/emotions can be through activities, postures, behaviors & facial expressions. Extensive research unveiled that there exists a strong relationship between the channels and emotions which has to be further investigated. An Automatic Facial Expression Recognition (AFER) framework has been proposed in this work that can predict or anticipate seven universal expressions. In order to evaluate the proposed approach, Frontal face Image Database also named as Japanese Female Facial Expression (JAFFE) is opted as input. This database is further processed with a frequency domain technique known as Discrete Cosine transform (DCT) and then classified using Artificial Neural Networks (ANN). So as to check the robustness of this novel strategy, the random trial of K-fold cross validation, leave one out and person independent methods is repeated many times to provide an overview of recognition rates. The experimental results demonstrate a promising performance of this application.
Liu, Keng-Cheng, Hsu, Chen-Chien, Wang, Wei-Yen, Chiang, Hsin-Han.
2019.
Facial Expression Recognition Using Merged Convolution Neural Network. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :296—298.
In this paper, a merged convolution neural network (MCNN) is proposed to improve the accuracy and robustness of real-time facial expression recognition (FER). Although there are many ways to improve the performance of facial expression recognition, a revamp of the training framework and image preprocessing renders better results in applications. When the camera is capturing images at high speed, however, changes in image characteristics may occur at certain moments due to the influence of light and other factors. Such changes can result in incorrect recognition of human facial expression. To solve this problem, we propose a statistical method for recognition results obtained from previous images, instead of using the current recognition output. Experimental results show that the proposed method can satisfactorily recognize seven basic facial expressions in real time.
Zhou, J., Zhang, X., Liu, Y., Lan, X..
2020.
Facial Expression Recognition Using Spatial-Temporal Semantic Graph Network. 2020 IEEE International Conference on Image Processing (ICIP). :1961—1965.
Motions of facial components convey significant information of facial expressions. Although remarkable advancement has been made, the dynamic of facial topology has not been fully exploited. In this paper, a novel facial expression recognition (FER) algorithm called Spatial Temporal Semantic Graph Network (STSGN) is proposed to automatically learn spatial and temporal patterns through end-to-end feature learning from facial topology structure. The proposed algorithm not only has greater discriminative power to capture the dynamic patterns of facial expression and stronger generalization capability to handle different variations but also higher interpretability. Experimental evaluation on two popular datasets, CK+ and Oulu-CASIA, shows that our algorithm achieves more competitive results than other state-of-the-art methods.