Biblio
When a robot breaks a person's trust by making a mistake or failing, continued interaction will depend heavily on how the robot repairs the trust that was broken. Prior work in psychology has demonstrated that both the trust violation framing and the trust repair strategy influence how effectively trust can be restored. We investigate trust repair between a human and a robot in the context of a competitive game, where a robot tries to restore a human's trust after a broken promise, using either a competence or integrity trust violation framing and either an apology or denial trust repair strategy. Results from a 2×2 between-subjects study ( n=82) show that participants interacting with a robot employing the integrity trust violation framing and the denial trust repair strategy are significantly more likely to exhibit behavioral retaliation toward the robot. In the Dyadic Trust Scale survey, an interaction between trust violation framing and trust repair strategy was observed. Our results demonstrate the importance of considering both trust violation framing and trust repair strategy choice when designing robots to repair trust. We also discuss the influence of human-to-robot promises and ethical considerations when framing and repairing trust between a human and robot.
The continued acceptance of enhanced security technologies in the private sector, such as two-factor authentication, has prompted significant changes of organizational security practices. While past work has focused on understanding how users in consumer settings react to enhanced security measures for banking, email, and more, little work has been done to explore how these technological transitions and applications occur within organizational settings. Moreover, while many corporations have invested significantly to secure their networks for the sake of protecting valuable intellectual property, academic institutions, which also create troves of intellectual property, have fallen behind in this endeavor. In this paper, we detail a transition from a token-based, two-factor authentication system within an academic institution to an entirely digital system utilizing employee-owned mobile devices. To accomplish this, we first conducted discussions with staff from the Information Security Office to understand the administrative perspective of the transition. Second, our key contribution is the analysis of an in-depth survey to explore the perceived benefits and usability of the novel technological requirements from the employee perspective. In particular, we investigate the implications of the new authentication system based on employee acceptance or opposition to the mandated technological transition, with a specific focus on the utilization of personal devices for workplace authentication.
Users receive a multitude of digital- and physical- security advice every day. Indeed, if we implemented all the security advice we received, we would never leave our houses or use the Internet. Instead, users selectively choose some advice to accept and some (most) to reject; however, it is unclear whether they are effectively prioritizing what is most important or most useful. If we can understand from where and why users take security advice, we can develop more effective security interventions.
As a first step, we conducted 25 semi-structured interviews of a demographically broad pool of users. These interviews resulted in several interesting findings: (1) participants evaluated digital-security advice based on the trustworthiness of the advice source, but evaluated physical-security advice based on their intuitive assessment of the advice content; (2) negative-security events portrayed in well-crafted fictional narratives with relatable characters (such as those shown in TV or movies) may be effective teaching tools for both digital- and physical-security behaviors; and (3) participants rejected advice for many reasons, including finding that the advice contains too much marketing material or threatens their privacy.
CP-ABE (Ciphertext-policy attribute based encryption) is considered as a secure access control for data sharing. However, the SK(secret key) in most CP-ABE scheme is generated by Centralized authority(CA). It could lead to the high cost of building trust and single point of failure. Because of the characters of blockchain, some schemes based on blockchain have been proposed to prevent the disclosure and protect privacy of users' attribute. Thus, a new CP-ABE identity-attribute management(IAM) data sharing scheme is proposed based on blockchain, i.e. IAM-BDSS, to guarantee privacy through the hidden policy and attribute. Meanwhile, we define a transaction structure to ensure the auditability of parameter transmission on blockchain system. The experimental results and security analysis show that our IAM-BDSS is effective and feasible.
A multitude of Channel Assignment (CA) schemes have created a paradox of plenty, making CA selection for Wireless Mesh Networks (WMNs) an onerous task. CA performance prediction (CAPP) metrics are novel tools that address the problem of appropriate CA selection. However, most CAPP metrics depend upon a variety of factors such as the WMN topology, the type of CA scheme, and connectedness of the underlying graph. In this work, we propose an improved Channel Assignment Link-Weight Metric (iCALM) that is independent of these constraints. To the best of our knowledge, iCALM is the first universal CAPP metric for WMNs. To evaluate iCALM, we design two WMN topologies that conform to the attributes of real-world mesh network deployments, and run rigorous simulations in ns-3. We compare iCALM to four existing CAPP metrics, and demonstrate that it performs exceedingly well, regardless of the CA type, and the WMN layout.
Currently, the networking of everyday objects, socalled Internet of Things (IoT), such as vehicles and home automation environments is progressing rapidly. Formerly deployed as domain-specific solutions, the development is continuing to link different domains together to form a large heterogeneous IoT ecosystem. This development raises challenges in different fields such as scalability of billions of devices, interoperability across different IoT domains and the need of mobility support. The Information-Centric Networking (ICN) paradigm is a promising candidate to form a unified platform to connect different IoT domains together including infrastructure, wireless, and ad-hoc environments. This paper describes a vision of a harmonized architectural design providing dynamic access of data and services based on an ICN. Within the context of connected vehicles, the paper introduces requirements and challenges of the vision and contributes in open research directions in Information-Centric Networking.
Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.
In this work, we use a subjective approach to compute cyber resilience metrics for industrial control systems. We utilize the extended form of the R4 resilience framework and span the metrics over physical, technical, and organizational domains of resilience. We develop a qualitative cyber resilience assessment tool using the framework and a subjective questionnaire method. We make sure the questionnaires are realistic, balanced, and pertinent to ICS by involving subject matter experts into the process and following security guidelines and standards practices. We provide detail mathematical explanation of the resilience computation procedure. We discuss several usages of the qualitative tool by generating simulation results. We provide a system architecture of the simulation engine and the validation of the tool. We think the qualitative simulation tool would give useful insights for industrial control systems' overall resilience assessment and security analysis.
Industrial control systems (ICS) have been widely adopted in mission-critical infrastructures. However, the increasing prevalence of cyberattacks targeting them has been a critical security concern. On the other hand, the high real-time and availability requirements of ICS limits the applicability of certain available security solutions due to the performance overhead they introduce and the system unavailability they cause. Moreover, scientific metrics (mathematical models) are not available to evaluate the efficiency and resilience of security solutions in the ICS context. Hence, in this paper, we propose ICS-SEA to address the ICS design constraints of Security, Efficiency, and Availability (SEA). Our ICS-SEA formally models the real-time constraints and physical-state resiliency quantitatively based on a typical ICS. We then design two real-world ICS testbeds and evaluate the efficiency and resilience of a few selected security solutions using our defined models. The results show that our ICS-SEA is effective to evaluate security solutions against the SEA conflicting design constraints in ICS.
Now a days, ATM is used for money transaction for the convenience of the user by providing round the clock 24*7 services in financial transaction. Bank provides the Debit or Credit card to its user along with particular PIN number (which is only known by the Bank and User). Sometimes, user's card may be stolen by someone and this person can access all confidential information as Credit card number, Card holder name, Expiry date and CVV number through which he/she can complete fake transaction. In this paper, we introduced the biometric encryption of "EYE RETINA" to enhance the security over the wireless and unreliable network as internet. In this method user can authorizeasthird person his/her behalf to make the transaction using Debit or Credit card. In proposed method, third person can also perform financial transaction by providing his/her eye retina for the authorization & identification purpose.
The main usage pattern of internet is shifting from traditional host-to-host central model to content dissemination model. It leads to the pretty prompt growth in Internet content. CDN and P2P are two mainstream techmologies to provide streaming content services in the current Internet. In recent years, some researchers have begun to focus on CDN-P2P-hybrid architecture and ISP-friendly P2P content delivery technology. Web applications have become one of the fundamental internet services. How to effectively support the popular browser-based web application is one of keys to success for future internet projects. This paper proposes ID based browser with caching in IDNet. IDNet consists of id/locator separation scheme and domain-insulated autonomous network architecture (DIANA) which redesign the future internet in the clean slate basis. Experiment shows that ID web browser with caching function can support how to disseminate content and how to find the closet network in IDNet having identical contents.
Intrusion Detection Systems (IDSs) are an important defense tool against the sophisticated and ever-growing network attacks. These systems need to be evaluated against high quality datasets for correctly assessing their usefulness and comparing their performance. We present an Intrusion Detection Dataset Toolkit (ID2T) for the creation of labeled datasets containing user defined synthetic attacks. The architecture of the toolkit is provided for examination and the example of an injected attack, in real network traffic, is visualized and analyzed. We further discuss the ability of the toolkit of creating realistic synthetic attacks of high quality and low bias.
Increasing number of Internet-scale applications, such as video streaming, incur huge amount of wide area traffic. Such traffic over the unreliable Internet without bandwidth guarantee suffers unpredictable network performance. This result, however, is unappealing to the application providers. Fortunately, Internet giants like Google and Microsoft are increasingly deploying their private wide area networks (WANs) to connect their global datacenters. Such high-speed private WANs are reliable, and can provide predictable network performance. In this paper, we propose a new type of service-inter-datacenter network as a service (iDaaS), where traditional application providers can reserve bandwidth from those Internet giants to guarantee their wide area traffic. Specifically, we design a bandwidth trading market among multiple iDaaS providers and application providers, and concentrate on the essential bandwidth pricing problem. The involved challenging issue is that the bandwidth price of each iDaaS provider is not only influenced by other iDaaS providers, but also affected by the application providers. To address this issue, we characterize the interaction between iDaaS providers and application providers using a Stackelberg game model, and analyze the existence and uniqueness of the equilibrium. We further present an efficient bandwidth pricing algorithm by blending the advantage of a geometrical Nash bargaining solution and the demand segmentation method. For comparison, we present two bandwidth reservation algorithms, where each iDaaS provider's bandwidth is reserved in a weighted fair manner and a max-min fair manner, respectively. Finally, we conduct comprehensive trace-driven experiments. The evaluation results show that our proposed algorithms not only ensure the revenue of iDaaS providers, but also provide bandwidth guarantee for application providers with lower bandwidth price per unit.
Cloud data integrity verification was an important means to ensure data security. We used public key infrastructure (PKI) to manage user keys in Traditional way, but there were problems of certificate verification and high cost of key management. In this paper, RSA signature was used to construct a new identity-based cloud audit protocol, which solved the previous problems caused by PKI and supported forward security, and reduced the loss caused by key exposure. Through security analysis, the design scheme could effectively resist forgery attack and support forward security.
Recently, the chaotic public-key cryptography attracts much attention of researchers, due to the great characters of chaotic maps. With the security superiorities and computation efficiencies of chaotic map over other cryptosystems, in this paper, a novel Identity-based signcryption scheme is proposed using extended chaotic maps. The difficulty of chaos-based discrete logarithm (CDL) problem lies the foundation of the security of proposed ECM-IBSC scheme.
In cloud computing environments, the user authentication scheme is an important security tool because it provides the authentication, authorization, and accounting for cloud users. Therefore, many user authentication schemes for cloud computing have been proposed in recent years. However, we find that most of the previous authentication schemes have some security problems. Besides, it cannot be implemented in cloud computing. To solve the above problems, we propose a new ID-based user authentication scheme for cloud computing in this paper. Compared with the related works, the proposed scheme has higher security levels and lower computation costs. In addition, it can be easily applied to cloud computing environments. Therefore, the proposed scheme is more efficient and practical than the related works.