Visible to the public Biblio

Filters: First Letter Of Title is K  [Clear All Filters]
A B C D E F G H I J [K] L M N O P Q R S T U V W X Y Z   [Show ALL]
K
Javidi, Giti, Sheybani, Ehsan.  2018.  K-12 Cybersecurity Education, Research, and Outreach. 2018 IEEE Frontiers in Education Conference (FIE). :1—5.
This research-to-practice work-in-progress addresses a new approach to cybersecurity education. The cyber security skills shortage is reaching prevalent proportions. The consensus in the STEM community is that the problem begins at k-12 schools with too few students interested in STEM subjects. One way to ensure a larger pipeline in cybersecurity is to train more high school teachers to not only teach cybersecurity in their schools or integrate cybersecurity concepts in their classrooms but also to promote IT security as an attractive career path. The proposed research will result in developing a unique and novel curriculum and scalable program in the area of cybersecurity and a set of powerful tools for a fun learning experience in cybersecurity education. In this project, we are focusing on the potential to advance research agendas in cybersecurity and train the future generation with cybersecurity skills and answer fundamental research questions that still exist in the blended learning methodologies for cybersecurity education and assessment. Leadership and entrepreneurship skills are also added to the mix to prepare students for real-world problems. Delivery methods, timing, format, pacing and outcomes alignment will all be assessed to provide a baseline for future research and additional synergy and integration with existing cybersecurity programs to expand or leverage for new cybersecurity and STEM educational research. This is a new model for cybersecurity education, leadership, and entrepreneurship and there is a possibility of a significant leap towards a more advanced cybersecurity educational methodology using this model. The project will also provide a prototype for innovation coupled with character-building and ethical leadership.
Jiang, Y., Hui, Q..  2017.  Kalman Filter with Diffusion Strategies for Detecting Power Grid False Data Injection Attacks. 2017 IEEE International Conference on Electro Information Technology (EIT). :254–259.

Electronic power grid is a distributed network used for transferring electricity and power from power plants to consumers. Based on sensor readings and control system signals, power grid states are measured and estimated. As a result, most conventional attacks, such as denial-of-service attacks and random attacks, could be found by using the Kalman filter. However, false data injection attacks are designed against state estimation models. Currently, distributed Kalman filtering is proved effective in sensor networks for detection and estimation problems. Since meters are distributed in smart power grids, distributed estimation models can be used. Thus in this paper, we propose a diffusion Kalman filter for the power grid to have a good performance in estimating models and to effectively detect false data injection attacks.

Chen, Yu, Zaki, Mohammed J..  2017.  KATE: K-Competitive Autoencoder for Text. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :85–94.

Autoencoders have been successful in learning meaningful representations from image datasets. However, their performance on text datasets has not been widely studied. Traditional autoencoders tend to learn possibly trivial representations of text documents due to their confoundin properties such as high-dimensionality, sparsity and power-law word distributions. In this paper, we propose a novel k-competitive autoencoder, called KATE, for text documents. Due to the competition between the neurons in the hidden layer, each neuron becomes specialized in recognizing specific data patterns, and overall the model can learn meaningful representations of textual data. A comprehensive set of experiments show that KATE can learn better representations than traditional autoencoders including denoising, contractive, variational, and k-sparse autoencoders. Our model also outperforms deep generative models, probabilistic topic models, and even word representation models (e.g., Word2Vec) in terms of several downstream tasks such as document classification, regression, and retrieval.

Chhetri, Sujit Rokka, Canedo, Arquimedes, Faruque, Mohammad Abdullah Al.  2016.  KCAD: Kinetic Cyber-attack Detection Method for Cyber-physical Additive Manufacturing Systems. Proceedings of the 35th International Conference on Computer-Aided Design. :74:1–74:8.

Additive Manufacturing (AM) uses Cyber-Physical Systems (CPS) (e.g., 3D Printers) that are vulnerable to kinetic cyber-attacks. Kinetic cyber-attacks cause physical damage to the system from the cyber domain. In AM, kinetic cyber-attacks are realized by introducing flaws in the design of the 3D objects. These flaws may eventually compromise the structural integrity of the printed objects. In CPS, researchers have designed various attack detection method to detect the attacks on the integrity of the system. However, in AM, attack detection method is in its infancy. Moreover, analog emissions (such as acoustics, electromagnetic emissions, etc.) from the side-channels of AM have not been fully considered as a parameter for attack detection. To aid the security research in AM, this paper presents a novel attack detection method that is able to detect zero-day kinetic cyber-attacks on AM by identifying anomalous analog emissions which arise as an outcome of the attack. This is achieved by statistically estimating functions that map the relation between the analog emissions and the corresponding cyber domain data (such as G-code) to model the behavior of the system. Our method has been tested to detect potential zero-day kinetic cyber-attacks in fused deposition modeling based AM. These attacks can physically manifest to change various parameters of the 3D object, such as speed, dimension, and movement axis. Accuracy, defined as the capability of our method to detect the range of variations introduced to these parameters as a result of kinetic cyber-attacks, is 77.45%.

Lipps, Christoph, Mallikarjun, Sachinkumar Bavikatti, Strufe, Matthias, Heinz, Christopher, Grimm, Christoph, Schotten, Hans Dieter.  2020.  Keep Private Networks Private: Secure Channel-PUFs, and Physical Layer Security by Linear Regression Enhanced Channel Profiles. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :93–100.
In the context of a rapidly changing and increasingly complex (industrial) production landscape, securing the (communication) infrastructure is becoming an ever more important but also more challenging task - accompanied by the application of radio communication. A worthwhile and promising approach to overcome the arising attack vectors, and to keep private networks private, are Physical Layer Security (PhySec) implementations. The paper focuses on the transfer of the IEEE802.11 (WLAN) PhySec - Secret Key Generation (SKG) algorithms to Next Generation Mobile Networks (NGMNs), as they are the driving forces and key enabler of future industrial networks. Based on a real world Long Term Evolution (LTE) testbed, improvements of the SKG algorithms are validated. The paper presents and evaluates significant improvements in the establishment of channel profiles, whereby especially the Bit Disagreement Rate (BDR) can be improved substantially. The combination of the Discrete Cosine Transformation (DCT) and the supervised Machine Learning (ML) algorithm - Linear Regression (LR) - provides outstanding results, which can be used beyond the SKG application. The evaluation also emphasizes the appropriateness of PhySec for securing private networks.
Skaug, Kirsten Lunde, Smebye, Elise Breivik, Tola, Besmir, Jiang, Yuming.  2022.  Keeping Connected in Internet-Isolated Locations. 2022 Seventh International Conference On Mobile And Secure Services (MobiSecServ). :1–7.
In many scenarios, Internet connectivity may not be available. In such situations, device-to-device (D2D) communication may be utilized to establish a peer-to-peer (P2P) network among mobile users in the vicinity. However, this raises a fundamental question as is how to ensure secure communication in such an infrastructure-less network. In this paper, we present an approach that enables connectivity between mobile devices in the vicinity and supports secure communication between users in Internet-isolated locations. Specifically, the proposed solution uses Wi-Fi Aware for establishing a P2P network and the mTLS (mutual Transport Layer Security) protocol to provide mutually authenticated and encrypted message transfer. Besides, a novel decentralized peer authentication (DPA) scheme compatible with Wi-Fi Aware and TLS is proposed, which enables peers to verify other peers to join the network. A proof-of-concept instant messaging application has been developed to test the proposed DPA scheme and to evaluate the performance of the proposed overall approach. Experimental results, which validate the proposed solution, are presented with findings and limitations discussed.
ISSN: 2640-558X
Nishioka, Chifumi, Scherp, Ansgar.  2017.  Keeping Linked Open Data Caches Up-to-Date by Predicting the Life-Time of RDF Triples. Proceedings of the International Conference on Web Intelligence. :73–80.

Many Linked Open Data applications require fresh copies of RDF data at their local repositories. Since RDF documents constantly change and those changes are not automatically propagated to the LOD applications, it is important to regularly visit the RDF documents to refresh the local copies and keep them up-to-date. For this purpose, crawling strategies determine which RDF documents should be preferentially fetched. Traditional crawling strategies rely only on how an RDF document has been modified in the past. In contrast, we predict on the triple level whether a change will occur in the future. We use the weekly snapshots of the DyLDO dataset as well as the monthly snapshots of the Wikidata dataset. First, we conduct an in-depth analysis of the life span of triples in RDF documents. Through the analysis, we identify which triples are stable and which are ephemeral. We introduce different features based on the triples and apply a simple but effective linear regression model. Second, we propose a novel crawling strategy based on the linear regression model. We conduct two experimental setups where we vary the amount of available bandwidth as well as iteratively observe the quality of the local copies over time. The results demonstrate that the novel crawling strategy outperforms the state of the art in both setups.

King, Pietro, Torrisi, Giuseppe, Gugiatti, Matteo, Carminati, Marco, Mertens, Susanne, Fiorini, Carlo.  2019.  Kerberos: a 48-Channel Analog Processing Platform for Scalable Readout of Large SDD Arrays. 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). :1–3.
The readout of large pixellated detectors with good spectroscopic quality represents a challenge for both front-end and back-end electronics. The TRISTAN project for the search of the Sterile neutrino in the keV-scale, envisions the operation of 21 detection modules equipped with a monolithic array of 166 SDDs each, for β-decay spectroscopy in the KATRIN experiment's spectrometer. Since the trace of the sterile neutrino existence would manifest as a kink of \textbackslashtextless; 1ppm in the continuous spectrum, high accuracy in the acquisition is required. Within this framework, we present the design of a multichannel scalable analog processing and DAQ system named Kerberos, aimed to provide a simple and low-cost multichannel readout option in the early phase of the TRISTAN detector development. It is based on three 16-channel integrated programmable analog pulse processors (SFERA ASICs), high linearity ADCs, and an FPGA. The platform is able to acquire data from up to 48 pixels in parallel, providing also different readout and multiplexing strategies. The use of an analog ASIC-based solution instead of a Digital Pulse Processor, represents a viable and scalable processing solution at the price of slightly limited versatility and count rate.
Tian, Donghai, Ma, Rui, Jia, Xiaoqi, Hu, Changzhen.  2019.  A Kernel Rootkit Detection Approach Based on Virtualization and Machine Learning. IEEE Access. 7:91657—91666.

OS kernel is the core part of the operating system, and it plays an important role for OS resource management. A popular way to compromise OS kernel is through a kernel rootkit (i.e., malicious kernel module). Once a rootkit is loaded into the kernel space, it can carry out arbitrary malicious operations with high privilege. To defeat kernel rootkits, many approaches have been proposed in the past few years. However, existing methods suffer from some limitations: 1) most methods focus on user-mode rootkit detection; 2) some methods are limited to detect obfuscated kernel modules; and 3) some methods introduce significant performance overhead. To address these problems, we propose VKRD, a kernel rootkit detection system based on the hardware assisted virtualization technology. Compared with previous methods, VKRD can provide a transparent and an efficient execution environment for the target kernel module to reveal its run-time behavior. To select the important run-time features for training our detection models, we utilize the TF-IDF method. By combining the hardware assisted virtualization and machine learning techniques, our kernel rootkit detection solution could be potentially applied in the cloud environment. The experiments show that our system can detect windows kernel rootkits with high accuracy and moderate performance cost.

Azarderakhsh, Reza, Jao, David, Kalach, Kassem, Koziel, Brian, Leonardi, Christopher.  2016.  Key Compression for Isogeny-Based Cryptosystems. Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography. :1–10.

We present a method for key compression in quantumresistant isogeny-based cryptosystems, which allows a reduction in and transmission costs of per-party public information by a factor of two, with no e ect on security. We achieve this reduction by associating a canonical choice of elliptic curve to each j-invariant, and representing elements on the curve as linear combinations with respect to a canonical choice of basis. This method of compressing public information can be applied to numerous isogeny-based protocols, such as key exchange, zero-knowledge identi cation, and public-key encryption. We performed personal computer and ARM implementations of the key exchange with compression and decompression in C and provided timing results, showing the computational cost of key compression and decompression at various security levels. Our results show that isogeny-based cryptosystems achieve by far the smallest possible key sizes among all existing families of post-quantum cryptosystems at practical security levels; e.g. 3073-bit public keys at the quantum 128-bit security level, comparable to (non-quantum) RSA key sizes.

Leonardi, Christopher, Koziel, Brian, Kalach, Kassem, Jao, David, Azarderakhsh, Reza.  2016.  Key Compression for Isogeny-Based Cryptosystems.

We present a method for key compression in quantumresistant isogeny-based cryptosystems, which allows a reduction in and transmission costs of per-party public information by a factor of two, with no e ect on security. We achieve this reduction by associating a canonical choice of elliptic curve to each j-invariant, and representing elements on the curve as linear combinations with respect to a canonical choice of basis. This method of compressing public information can be applied to numerous isogeny-based protocols, such as key exchange, zero-knowledge identi cation, and public-key encryption. We performed personal computer and ARM implementations of the key exchange with compression and decompression in C and provided timing results, showing the computational cost of key compression and decompression at various security levels. Our results show that isogeny-based cryptosystems achieve by far the smallest possible key sizes among all existing families of post-quantum cryptosystems at practical security levels; e.g. 3073-bit public keys at the quantum 128-bit security level, comparable to (non-quantum) RSA key sizes.

Mohsen, Y., Hamdy, M., Shaaban, E..  2019.  Key distribution protocol for Identity Hiding in MANETs. 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS). :245–252.
Mobile Ad-hoc Networks (MANETs) are formed when a group of mobile nodes, communicate through wireless links in the absence of central administration. These features make them more vulnerable to several attacks like identity spoofing which leads to identity disclosure. Providing anonymity and privacy for identity are critical issues, especially when the size of such networks scales up. to avoid the centralization problem for key distribution in MANETs. This paper proposes a key distribution scheme for clustered ad-hoc networks. The network is divided into groups of clusters, and each cluster head is responsible for distributing periodically updated security keys among cluster members, for protecting privacy through encryption. Also, an authentication scheme is proposed to ensure the confidentiality of new members to the cluster. The simulation study proves the effectiveness of the proposed scheme in terms of availability and overhead. It scales well for high dense networks and gives less packet drop rate compared to its centralized counterpart in the presence of malicious nodes.
Zhang, Fengbin, Liu, Xingwei, Wei, Zechen, Zhang, Jiali, Yang, Nan, Song, Xuri.  2022.  Key Feature Mining Method for Power-Cut Window Based on Grey Relational Analysis. 2022 IEEE 5th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). 5:595–598.
In the process of compiling the power-cut window period of the power grid equipment maintenance plan, problems such as omission of constraints are prone to occur due to excessive reliance on manual experience. In response to these problems, this paper proposes a method for mining key features of the power-cut window based on grey relational analysis. Through mining and analysis of the historical operation data of the power grid, the operation data of new energy, and the historical power-cut information of equipment, the indicators that play a key role in the arrangement of the outage window period of the equipment maintenance plan are found. Then use the key indicator information to formulate the window period. By mining the relationship between power grid operation data and equipment power outages, this paper can give full play to the big data advantages of the power grid, improve the accuracy and efficiency of the power-cut window period.
Hajomer, A. A. E., Yang, X., Sultan, A., Sun, W., Hu, W..  2018.  Key Generation and Distribution Using Phase Fluctuation in Classical Fiber Channel. 2018 20th International Conference on Transparent Optical Networks (ICTON). :1–3.

We propose a secure key generation and distribution scheme for data encryption in classical optical fiber channel. A Delay interferometer (DI) is used to track the random phase fluctuation inside fiber, while the reconfigurable lengths of polarization-maintaining (PM) fiber are set as the source of optical phase fluctuations. The output signals from DI are extracted as the secret key and shared between the two-legal transmitter and receiver. Because of the randomness of local environment and the uniqueness of fiber channel, the phase fluctuation between orthogonal polarization modes (OPMs) can be used as secure keys to enhance the level of security in physical layer. Experimentally, we realize the random key generation and distribution over 25-km standard single-mode fiber (SSMF). Moreover, the proposed key generation scheme has the advantages of low cost, compatible with current optical fiber networks and long distance transmission with optical amplifiers.

Nisperos, Z. A., Gerardo, B., Hernandez, A..  2020.  Key Generation for Zero Steganography Using DNA Sequences. 2020 12th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–6.
Some of the key challenges in steganography are imperceptibility and resistance to detection of steganalysis algorithms. Zero steganography is an approach to data hiding such that the cover image is not modified. This paper focuses on the generation of stego-key, which is an essential component of this steganographic approach. This approach utilizes DNA sequences and shifting and flipping operations in its binary code representation. Experimental results show that the key generation algorithm has a low cracking probability. The algorithm satisfies the avalanche criterion.
Buchade, A.R., Ingle, R..  2014.  Key Management for Cloud Data Storage: Methods and Comparisons. Advanced Computing Communication Technologies (ACCT), 2014 Fourth International Conference on. :263-270.

Cloud computing paradigm is being used because of its low up-front cost. In recent years, even mobile phone users store their data at Cloud. Customer information stored at Cloud needs to be protected against potential intruders as well as cloud service provider. There is threat to the data in transit and data at cloud due to different possible attacks. Organizations are transferring important information to the Cloud that increases concern over security of data. Cryptography is common approach to protect the sensitive information in Cloud. Cryptography involves managing encryption and decryption keys. In this paper, we compare key management methods, apply key management methods to various cloud environments and analyze symmetric key cryptography algorithms.

Gandino, F., Montrucchio, B., Rebaudengo, M..  2014.  Key Management for Static Wireless Sensor Networks With Node Adding. Industrial Informatics, IEEE Transactions on. 10:1133-1143.

Wireless sensor networks offer benefits in several applications but are vulnerable to various security threats, such as eavesdropping and hardware tampering. In order to reach secure communications among nodes, many approaches employ symmetric encryption. Several key management schemes have been proposed in order to establish symmetric keys. The paper presents an innovative key management scheme called random seed distribution with transitory master key, which adopts the random distribution of secret material and a transitory master key used to generate pairwise keys. The proposed approach addresses the main drawbacks of the previous approaches based on these techniques. Moreover, it overperforms the state-of-the-art protocols by providing always a high security level.

Kodali, Ravi Kishore.  2014.  Key management technique for WSNs. Region 10 Symposium, 2014 IEEE. :540-545.

In Wireless sensor networks (WSNs), many tiny sensor nodes communicate using wireless links and collaborate with each other. The data collected by each of the nodes is communicated towards the gateway node after carrying out aggregation of the data by different nodes. It is necessary to secure the data collected by the WSN nodes while they communicate among themselves using multi hop wireless links. To meet this objective it is required to make use of energy efficient cryptographic algorithms so that the same can be ported over the resource constrained nodes. It is needed to create trust initially among the WSN nodes while using any of the cryptographic algorithms. Towards this, a key management technique needs to be made use of. Due to the resource constrained nature of the WSN nodes and the remote deployment of the nodes, an implementation of conventional key management techniques is infeasible. This work proposes a key management technique, with its reduced resource overheads, which is highly suited to be used in hierarchical WSN applications. Both Identity based key management (IBK) and probabilistic key pre-distribution schemes are made use of at different hierarchical levels. The proposed key management technique has been implemented using IRIS WSN nodes. A comparison of resource overheads has also been carried out.

Singh, Neha, Singh, Saurabh, Kumar, Naveen, Kumar, Rakesh.  2016.  Key Management Techniques for Securing MANET. Proceedings of the ACM Symposium on Women in Research 2016. :77–80.

A Mobile Ad hoc Network (MANET) is a spontaneous network consisting of wireless nodes which are mobile and self-configuring in nature. Devices in MANET can move freely in any direction independently and change its link frequently to other devices. MANET does not have centralized infrastructure and its characteristics makes this network vulnerable to various kinds of attacks. Data transfer is a major problem due to its nature of unreliable wireless medium. Commonly used technique for secure transmission in wireless network is cryptography. Use of cryptography key is often involved in most of cryptographic techniques. Key management is main component in security issues of MANET and various schemes have been proposed for it. In this paper, a study on various kinds of key management techniques in MANET is presented.

Yuliana, Mike, Suwadi, Wirawan.  2020.  Key Rate Enhancement by Using the Interval Approach in Symmetric Key Extraction Mechanism. 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE). :1–6.
Wireless security is confronted with the complexity of the secret key distribution process, which is difficult to implement on an Ad Hoc network without a key management infrastructure. The symmetric key extraction mechanism from a response channel in a wireless environment is a very promising alternative solution with the simplicity of the key distribution process. Various mechanisms have been proposed for extracting the symmetric key, but many mechanisms produce low rates of the symmetric key due to the high bit differences that occur. This led to the fact that the reconciliation phase was unable to make corrections, as a result of which many key bits were lost, and the time required to obtain a symmetric key was increased. In this paper, we propose the use of an interval approach that divides the response channel into segments at specific intervals to reduce the key bit difference and increase the key rates. The results of tests conducted in the wireless environment show that the use of these mechanisms can increase the rate of the keys up to 35% compared to existing mechanisms.
Núñez, Ivonne, Cano, Elia, Rovetto, Carlos, Ojo-Gonzalez, Karina, Smolarz, Andrzej, Saldana-Barrios, Juan Jose.  2022.  Key technologies applied to the optimization of smart grid systems based on the Internet of Things: A Review. 2022 V Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil (AmITIC). :1—8.
This article describes an analysis of the key technologies currently applied to improve the quality, efficiency, safety and sustainability of Smart Grid systems and identifies the tools to optimize them and possible gaps in this area, considering the different energy sources, distributed generation, microgrids and energy consumption and production capacity. The research was conducted with a qualitative methodological approach, where the literature review was carried out with studies published from 2019 to 2022, in five (5) databases following the selection of studies recommended by the PRISMA guide. Of the five hundred and four (504) publications identified, ten (10) studies provided insight into the technological trends that are impacting this scenario, namely: Internet of Things, Big Data, Edge Computing, Artificial Intelligence and Blockchain. It is concluded that to obtain the best performance within Smart Grids, it is necessary to have the maximum synergy between these technologies, since this union will enable the application of advanced smart digital technology solutions to energy generation and distribution operations, thus allowing to conquer a new level of optimization.
Reyad, Omar, Mansour, Hanaa M., Heshmat, Mohamed, Zanaty, Elnomery A..  2021.  Key-Based Enhancement of Data Encryption Standard For Text Security. 2021 National Computing Colleges Conference (NCCC). :1—6.
Securing various data types such as text, image, and video is needed in real-time communications. The transmission of data over an insecure channel is a permanent challenge, especially in mass Internet applications. Preserving confidentiality and integrity of data toward malicious attacks, accidental devastation, change during transfer, or while in storage must be improved. Data Encryption Standard (DES) is considered as a symmetric-key algorithm that is most widely used for various security purposes. In this work, a Key-based Enhancement of the DES (KE-DES) technique for securing text is proposed. The KEDES is implemented by the application of two steps: the first is merging the Odd/Even bit transformation of every key bit in the DES algorithm. The second step is replacing the right-side expansion of the original DES by using Key-Distribution (K-D) function. The K-D allocation consists of 8-bits from Permutation Choice-1 (PC-1) key outcome. The next 32-bits outcomes from the right-side of data, there is also 8-bits outcome from Permutation Choice-2 (PC-2) in each round. The key and data created randomly, in this case, provide adequate security and the KEDES model is considered more efficient for text encryption.
Pinto, Thyago M. S., Vilela, João P., Gomes, Marco A. C., Harrison, Willie K..  2021.  Keyed Polar Coding for Physical-Layer Security without Channel State Information. ICC 2021 - IEEE International Conference on Communications. :1–6.
Polar codes have been shown to provide an effective mechanism for achieving physical-layer security over various wiretap channels. A majority of these schemes require channel state information (CSI) at the encoder for both intended receivers and eavesdroppers. In this paper, we consider a polar coding scheme for secrecy over a Gaussian wiretap channel when no CSI is available. We show that the availability of a shared keystream between friendly parties allows polar codes to be used for both secure and reliable communications, even when the eavesdropper knows a large fraction of the keystream. The scheme relies on a predetermined strategy for partitioning the bits to be encoded into a set of frozen bits and a set of information bits. The frozen bits are filled with bits from the keystream, and we evaluate the security gap when the cyclic redundancy check-aided successive cancellation list decoder is used at both receivers in the wiretap channel model.
ZivariFard, H., Bloch, M., Nosratinia, A..  2020.  Keyless Covert Communication in the Presence of Channel State Information. 2020 IEEE International Symposium on Information Theory (ISIT). :834—839.
We consider the problem of covert communication when Channel State Information (CSI) is available non-causally, causally, and strictly causally at both transmitter and receiver, as well as the case when channel state information is only available at the transmitter. Covert communication with respect to an adversary referred to as the "warden", is one in which the distribution induced during communication at the channel output observed by the warden is identical to the output distribution conditioned on an innocent channel-input symbol. In contrast to previous work, we do not assume the availability of a shared key at the transmitter and legitimate receiver; instead shared randomness is extracted from the channel state, in a manner that keeps it secret from the warden despite the influence of the channel state on the warden's output. When CSI is available at both transmitter and receiver, we derive the covert capacity region; when CSI is only available at the transmitter, we derive inner and outer bounds on the covert capacity. We also derive the covert capacity when the warden's channel is less noisy with respect to the legitimate receiver. We provide examples for which covert capacity is zero without channel state information, but is positive in the presence of channel state information.
Derhab, Abdelwahid.  2022.  Keynote Speaker 6: Intrusion detection systems using machine learning for the security of autonomous vehicles. 2022 15th International Conference on Security of Information and Networks (SIN). :1–1.
The emergence of smart cars has revolutionized the automotive industry. Today's vehicles are equipped with different types of electronic control units (ECUs) that enable autonomous functionalities like self-driving, self-parking, lane keeping, and collision avoidance. The ECUs are connected to each other through an in-vehicle network, named Controller Area Network. In this talk, we will present the different cyber attacks that target autonomous vehicles and explain how an intrusion detection system (IDS) using machine learning can play a role in securing the Controller Area Network. We will also discuss the main research contributions for the security of autonomous vehicles. Specifically, we will describe our IDS, named Histogram-based Intrusion Detection and Filtering framework. Next, we will talk about the machine learning explainability issue that limits the acceptability of machine learning in autonomous vehicles, and how it can be addressed using our novel intrusion detection system based on rule extraction methods from Deep Neural Networks.