Biblio
Presented at the Symposium and Bootcamp in the Science of Security (HotSoS 2017), poster session in Hanover, MD, April 4-5, 2017.
Presented at ITI Joint Trust and Security/Science of Security Seminar, February 21, 2017.
Presented at NSA SoS Quarterly Meeting, February 2, 2017
Prentation at Illinois SoS Lablet Bi-Weekly Meeting, January 2015.
In this talk, we investigate applications of Factor Graphs to automatically generate attack signatures from security logs and domain expert knowledge. We demonstrate advantages of Factor Graphs over traditional probabilistic graphical models such as Bayesian Networks and Markov Random Fields in modeling security attacks. We illustrate Factor Graphs models using case studies of real attacks observed in the wild and at the National Center for Supercomputing Applications. Finally, we investigate how factor functions, a core component of Factor Graphs, can be constructed automatically to potentially improve detection accuracy and allow generalization of trained Factor Graph models in a variety of systems.
Presentation for Information Trust Institute Joint Trust and Security/Science of Security Seminar at the University of Illinois at Urbana-Champaign on November 1, 2016.
Presented at the NSA Science of Security Quarterly Meeting, July 2016.
Presented at the Science of Security Quarterly Meeting, July 2016.
Presented at the NSA Science of Security Quarterly Meeting, November 2016.
Stealthy attackers often disable or tamper with system monitors to hide their tracks and evade detection. In this poster, we present a data-driven technique to detect such monitor compromise using evidential reasoning. Leveraging the fact that hiding from multiple, redundant monitors is difficult for an attacker, to identify potential monitor compromise, we combine alerts from different sets of monitors by using Dempster-Shafer theory, and compare the results to find outliers. We describe our ongoing work in this area.
Presented at the NSA Science of Security Quarterly Meeting, July 2016.
The concept of differential privacy stems from the study of private query of datasets. In this work, we apply this concept to discrete-time, linear distributed control systems in which agents need to maintain privacy of certain preferences, while sharing information for better system-level performance. The system has N agents operating in a shared environment that couples their dynamics. We show that for stable systems the performance grows as O(T3/Nε2), where T is the time horizon and ε is the differential privacy parameter. Next, we study lower-bounds in terms of the Shannon entropy of the minimal mean square estimate of the system’s private initial state from noisy communications between an agent and the server. We show that for any of noise-adding differentially private mechanism, then the Shannon entropy is at least nN(1−ln(ε/2)), where n is the dimension of the system, and t he lower bound is achieved by a Laplace-noise-adding mechanism. Finally, we study the problem of keeping the objective functions of individual agents differentially private in the context of cloud-based distributed optimization. The result shows a trade-off between the privacy of objective functions and the performance of the distributed optimization algorithm with noise.
Presented at the Joint Trust and Security/Science of Security Seminar, April 26, 2016.
Presented at the NSA Science of Security Quarterly Meeting, July 2016.
Best Poster Award, Illinois Institute of Technology Research Day, April 11, 2016.
Presented at the 11th European Dependable Computing Conference-Dependabiltiy in Practice (EDCC 2015), September 2015.
Presented at the SoS Lablet/R2 Monthly Meeting, January 2017.
Presented to the Illinois SoS Bi-weekly Meeting, April 2015.
Presented as part of the Illinois Science of Security Lablet Bi-Weekly Meetings, September 2014.
Healthcare professionals have unique motivations, goals, perceptions, training, tensions, and behaviors, which guide workflow and often lead to unprecedented workarounds that weaken the efficacy of security policies and mechanisms. Identifying and understanding these factors that contribute to circumvention, as well as the acts of circumvention themselves, is key to designing, implementing, and maintaining security subsystems that achieve security goals in healthcare settings. To this end, we present our research on workarounds to computer security in healthcare settings without compromising the fundamental health goals. We argue and demonstrate that understanding workarounds to computer security, especially in medical settings, requires not only analyses of computer rules and processes, but also interviews and observations with users and security personnel. In addition, we discuss the value of shadowing clinicians and conducting focus groups with them to understand their motivations and tradeoffs for circumvention. Ethnographic investigation of workflow is paramount to achieving security objectives.
Presented at Safety, Security, Privacy and Interoperability of Health Information Technologies (HealthTec 2014), August 19, 2014 in San Diego, CA. See video at URL below.
Presented at the Symposium and Bootcamp in the Science of Security (HotSoS 2017), poster session in Hanover, MD, April 4-5, 2017.
Presented at the Symposium and Bootcamp in the Science of Security (HotSoS 2017), poster session in Hanover, MD, April 4-5, 2017.