Visible to the public Biblio

Found 16998 results

Presentation
Sean Smith, Dartmouth College, Ross Koppel, University of Pennsylvania, Jim Blythe, University of Southern California, Vijay Kothari, Dartmouth College.  2017.  Flawed Mental Models Lead to Bad Cybersecurity Decisions: Let’s Do a Better Job!.

Presented at the Symposium and Bootcamp in the Science of Security (HotSoS 2017), poster session in Hanover, MD, April 4-5, 2017.

Quanyan Zhu, University of Illinois at Urbana-Champaign, Tamer Başar, University of Illinois at Urbana-Champaign.  2012.  Game-Theoretic Methods for Distributed Management of Energy Resources in the Smart Grid.

The smart grid is an ever-growing complex dynamic system with multiple interleaved layers and a large number of interacting components. In this talk, we discuss how game-theoretic tools can be used as an analytical tool to understand strategic interactions at different layers of the system and between different decision-making entities for distributed management of energy resources. We first investigate the issue of integration of renewable energy resources into the power grid. We establish a game-theoretic framework for modeling the strategic behavior of buses that are connected to renewable energy resources, and study the Nash equilibrium solution of distributed power generation at each bus. Our framework uses a cross-layer approach, taking into account the economic factors as well as system stability issues at the physical layer. In the second part of the talk, we discuss the issue of integration of plug-in electric vehicles (PHEVs) for vehicle-to-grid (V2G) transactions on the smart grid. Electric vehicles will be capable of buying and selling energy from smart parking lots in the future. We propose a multi-resolution and multi-layer stochastic differential game framework to study the dynamic decision-making process among PHEVs. We analyze the stochastic game in a large-population regime and account for the multiple types of interactions in the grid. Using these two settings, we demonstrate that game theory is a versatile tool to address many fundamental and emerging issues in the smart grid.

Presented at the Eighth Annual Carnegie Mellon Conference on the Electricity Industry Data-Driven Sustainable Engergy Systems in Pittsburgh, PA, March 12-14, 2012.

Mohammad Noureddine, University of Illinois at Urbana-Champaign.  2015.  Human Aware Science of Security.

Presented at the Illinois SoS Bi-weekly Meeting, February 2015.

Brighten Godfrey, University of Illions at Urbana-Champagin, Anduo Wang, Temple University, Dong Jin, Illinois Institute of Technology, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign.  2015.  A Hypothesis Testing Framework for Network Security.

We rely on network infrastructure to deliver critical services and ensure security. Yet networks today have reached a level of complexity that is far beyond our ability to have confidence in their correct behavior – resulting in significant time investment and security vulnerabilities that can cost millions of dollars, or worse. Motivated by this need for rigorous understanding of complex networks, I will give an overview of our or Science of Security lablet project, A Hypothesis Testing Framework for Network Security.

First, I will discuss the emerging field of network verification, which transforms network security by rigorously checking that intended behavior is correctly realized across the live running network. Our research developed a technique called data plane verification, which has discovered problems in operational environments and can verify hypotheses and security policies with millisecond-level latency in dynamic networks. In just a few years, data plane verification has moved from early research prototypes to production deployment. We have built on this technique to reason about hypotheses even under the temporal uncertainty inherent in a large distributed network. Second, I will discuss a new approach to reasoning about networks as databases that we can query to determine answers to behavioral questions and to actively control the network. This talk will span work by a large group of folks, including Anduo Wang, Wenxu an Zhou, Dong Jin, Jason Croft, Matthew Caesar, Ahmed Khurshid, and Xuan Zou.

Presented at the Illinois ITI Joint Trust and Security/Science of Security Seminar, September 15, 2015.

Ken Keefe, University of Illinois at Urbana-Champaign.  2014.  Making Sound Design Decisions Using Quantitative Security Metrics.

Presented at the Illinois SoS Bi-weekly Meeting, December 2014.

Ning Liu, Illinois Institute of Technology, Xian-He Sun, Illinois Institute of Technology, Dong Jin, Illinois Institute of Technology.  2015.  On Massively Parallel Simulation of Large-Scale Fat-Tree Networks for HPC Systems and Data Centers (poster). ACM SIGSIM Conference on Principles of Advanced Discrete Simulation.

Best Poster Award, ACM SIGCOMM Conference on Principles of Advanced Discrete Simulation, London, UK, June 10-12, 2015.

Santhosh Prabhu, University of Illinois at Urbana-Champaign.  2016.  Oreo: Transparent Optimization to Enable Flexible Policy Enforcement in Software Defined Networks.

Commercial networks today have diverse security policies, defined by factors such as the type of traffic they carry, nature of applications they support, access control objectives, organizational principles etc. Ideally, the wide diversity in SDN controller frameworks should prove helpful in correctly and efficiently enforcing these policies. However, this has not been the case so far. By requiring the administrators to implement both security as well as performance objectives in the SDN controller, these frameworks have made the task of security policy enforcement in SDNs a challenging one. We observe that by separating security policy enforcement from performance optimization, we can facilitate the use of SDN for flexible policy management. To this end, we propose Oreo, a transparent performance enhancement layer for SDNs. Oreo allows SDN controllers to focus entirely on a correct security policy enforcement, and transparently optimizes the dataplane thus defined, reducing path stretch, switch memory consumption etc. Optimizations are performed while guaranteeing that end-to-end reachability characteristics are preserved – meaning that the security policies defined by the controller are not violated. Oreo performs these optimizations by first constructing a network-wide model describing the behavior of all traffic, and then optimizing the paths observed in the model by solving a multi-objective optimization problem. Initial experiments suggest that the techniques used by Oreo is effective, fast, and can scale to commercial-sized networks.

Santhosh Prabhu, University of Illinois at Urbana-Champaign.  2016.  Oreo: Transparent Optimization to Enable Flexible Policy Enforcement in Softward Defined Networks.

Commercial networks today have diverse security policies, defined by factors such as the type of traffic they carry, nature of applications they support, access control objectives, organizational principles etc. Ideally, the wide diversity in SDN controller frameworks should prove helpful in correctly and efficiently enforcing these policies. However, this has not been the case so far. By requiring the administrators to implement both security as well as performance objectives in the SDN controller, these frameworks have made the task of security policy enforcement in SDNs a challenging one. We observe that by separating security policy enforcement from performance optimization, we can facilitate the use of SDN for flexible policy management. To this end, we propose Oreo, a transparent performance enhancement layer for SDNs. Oreo allows SDN controllers to focus entirely on a correct security policy enforcement, and transparently optimizes the dataplane thus defined, reducing path stretch, switch memory consumption etc. Optimizations are performed while guaranteeing that end-to-end reachability characteristics are preserved – meaning that the security policies defined by the controller are not violated. Oreo performs these optimizations by first constructing a network-wide model describing the behavior of all traffic, and then optimizing the paths observed in the model by solving a multi-objective optimization problem. Initial experiments suggest that the techniques used by Oreo is effective, fast, and can scale to commercial-sized networks.

Phuong Cao, University of Illinois at Urbana-Champaign, Ravishankar Iyer, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Eric Badger, University of Illinois at Urbana-Champaign, Surya Bakshi, University of Illinois at Urbana-Champaign, Simon Kim, University of Illinois at Urbana-Champaign, Adam Slagell, University of Illinois at Urbana-Champaign, Alex Withers, University of Illinois at Urbana-Champaign.  2016.  Preemptive Intrusion Detection – Practical Experience and Detection Framework.

Using stolen or weak credentials to bypass authentication is one of the top 10 network threats, as shown in recent studies. Disguising as legitimate users, attackers use stealthy techniques such as rootkits and covert channels to gain persistent access to a target system. However, such attacks are often detected after the system misuse stage, i.e., the attackers have already executed attack payloads such as: i) stealing secrets, ii) tampering with system services, and ii) disrupting the availability of production services.

In this talk, we analyze a real-world credential stealing attack observed at the National Center for Supercomputing Applications. We show the disadvantages of traditional detection techniques such as signature-based and anomaly-based detection for such attacks. Our approach is a complement to existing detection techniques. We investigate the use of Probabilistic Graphical Model, specifically Factor Graphs, to integrate security logs from multiple sources for a more accurate detection. Finally, we propose a security testbed architecture to: i) simulate variants of known attacks that may happen in the future, ii) replay such attack variants in an isolated environment, and iii) collect and share security logs of such replays for the security research community.

Pesented at the Illinois Information Trust Institute Joint Trust and Security and Science of Security Seminar, May 3, 2016.

Ravishankar K. Iyer, University of Illinois at Urbana-Champaign, Phuong Cao, University of Illinois at Urbana-Champaign.  2015.  Preemptive Intrusion Detection: Theoretical Framework and Real-world Measurements.

Presented at the NSA SoS Quarterly Lablet Meeting, January 2015 by Ravi Iyer.

Presented at the Illinois SoS Bi-Weekly Meeting, February 2015 by Phuong Cao.