Biblio
We introduce a framework for controlling the energy provided or absorbed by distributed energy resources (DERs) in power distribution networks. In this framework, there is a set of agents referred to as aggregators that interact with the wholesale electricity market, and through some market-clearing mechanism, are requested (and will be compensated for) to provide (or absorb) certain amount of active (or reactive) power over some period of time. In order to fulfill the request, each aggregator interacts with a set of DERs and offers them some price per unit of active (or reactive) power they provide (or absorb); the objective is for the aggregator to design a pricing strategy for incentivizing DERs to change its active (or reactive) power consumption (or production) so as they collectively provide the amount that the aggregator has been asked for. In order to make a decision, each DER uses the price information provided by the aggregator and some estimate of the average active (or reactive) power that neighboring DERs can provide computed through some exchange of information among them; this exchange is described by a connected undirected graph. The focus is on the DER strategic decision-making process, which we cast as a game. In this context, we provide sufficient conditions on the aggregator's pricing strategy under which this game has a unique Nash equilibrium. Then, we propose a distributed iterative algorithm that adheres to the graph that describes the exchange of information between DERs that allows them to seek for this Nash equilibrium. We illustrate our results through several numerical simulations.
Presented as part of the DIMACS Workshop on Energy Infrastructure: Designing for Stability and Resilience, Rutgers University, Piscataway, NJ, February 20-22, 2013
Presented at NSA SoS Quarterly Meeting, February 2, 2017.
Poster presented at the 2017 Science of Security UIUC Lablet Summer Internship Poster Session held on July 27, 2017 in Urbana, IL.
Presented at the NSA Science of Security Quarterly Meeting, July 2015.
Poster presented at the 2017 Science of Security UIUC Lablet Summer Internship Poster Session held on July 27, 2017 in Urbana, IL.
Presented at the NSA Science of Security Quarterly Meeting, July 2016.
Presented at a tutorial at the Symposium and Bootcamp on the Science of Security (HotSoS 2015), April 2015.
Presented at the NSA Science of Security Quarterly Meeting, October 2014 and the Illinois SoS Bi-Weekly Meeting, November 2014.
Presented at NSA Science of Security Quarterly Lablet Meeting, July 2016.
This talk will explore a scalable data analytics pipeline for real-time attack detection through the use of customized honeypots at the National Center for Supercomputing Applications (NCSA). Attack detection tools are common and are constantly improving, but validating these tools is challenging. You must: (i) identify data (e.g., system-level events) that is essential for detecting attacks, (ii) extract this data from multiple data logs collected by runtime monitors, and (iii) present the data to the attack detection tools. On top of this, such an approach must scale with an ever-increasing amount of data, while allowing integration of new monitors and attack detection tools. All of these require an infrastructure to host and validate the developed tools before deployment into a production environment.
We will present a generalized architecture that aims for a real-time, scalable, and extensible pipeline that can be deployed in diverse infrastructures to validate arbitrary attack detection tools. To motivate our approach, we will show an example deployment of our pipeline based on open-sourced tools. The example deployment uses as its data sources: (i) a customized honeypot environment at NCSA and (ii) a container-based testbed infrastructure for interactive attack replay. Each of these data sources is equipped with network and host-based monitoring tools such as Bro (a network-based intrusion detection system) and OSSEC (a host-based intrusion detection system) to allow for the runtime collection of data on system/user behavior. Finally, we will present an attack detection tool that we developed and that we look to validate through our pipeline. In conclusion, the talk will discuss the challenges of transitioning attack detection from theory to practice and how the proposed data analytics pipeline can help that transition.
Presented at the Illinois Information Trust Institute Joint Trust and Security/Science of Security Seminar, October 6, 2016.
Presented at the NSA SoS Quarterly Lablet Meeting, October 2015.
Presented at the Illinois SoS Lablet Bi-Weekly Meeting, February 2016.
Presented at the UIUC/R2 Monthly Meeting on September 18, 2017.
Presented at the NSA Science of Security Quarterly Meeting, July 2016.
We present a controller synthesis algorithm for a discrete time reach-avoid problem in the presence of adversaries. Our model of the adversary captures typical malicious attacks envisioned on cyber-physical systems such as sensor spoofing, controller corruption, and actuator intrusion. After formulating the problem in a general setting, we present a sound and complete algorithm for the case with linear dynamics and an adversary with a budget on the total L2-norm of its actions. The algorithm relies on a result from linear control theory that enables us to decompose and precisely compute the reachable states of the system in terms of a symbolic simulation of the adversary-free dynamics and the total uncertainty induced by the adversary. We provide constraint-based synthesis algorithms for synthesizing open-loop and a closed-loop controllers using SMT solvers.
Prestented at the Joint Trust and Security/Science of Security Seminar, November 3, 2015.
Anonymous microblogging platforms, such as Whisper, Yik Yak, and Secret have emerged as important tools for sharing one’s thoughts without fear of judgment by friends, the public, or authorities. These platforms provide anonymity by allowing users to share content (e.g., short messages) with their peers without revealing authorship information to other users. However, recent advances in rumor source detection show that existing messaging protocols, including those used in the mentioned anonymous microblogging applications, leak authorship information when the adversary has global access to metadata. For example, if an adversary can see which users of a messaging service received a particular message, or the timestamps at which a subset of users received a given message, the adversary can infer the message author’s identity with high probability. We introduce a novel anonymous messaging protocol, which we call adaptive diffusion, that is designed to resist such adversaries. We show that adaptive diffusion spreads messages quickly while achieving provably-optimal anonymity guarantees for specific classes of connectivity networks. Simulations on real social network data show that adaptive diffusion effectively hides the location of the source on real-world networks.
Poster presentation at NSA SoS Lablet Quarterly Meeting in Luaral, MD, November 1-2, 2016.
Presented at the Illinois Lablet Science of Security Bi-weekly Meeting, March 2015.
Presented at the NSA Science of Security Quarterly Meeting, October 2014.
Presented at the Illinois Science of Security Bi-weekly Meeting, April 2015.
Invited Tutorial, Symposium and Bootcamp on the Science of Security (HotSoS 2016), April 2016.
Modern industrial control systems (ICSes) are increasingly adopting Internet technology to boost control efficiency, which unfortunately opens up a new frontier for cyber-security. People have typically applied existing Internet security techniques, such as firewalls, or anti-virus or anti-spyware software. However, those security solutions can only provide fine-grained protection at single devices. To address this, we design a novel software-defined networking (SDN) architecture that offers the global visibility of a control network infrastructure, and we investigate innovative SDN-based applications with the focus of ICS security, such as network verification and self-healing phasor measurement unit (PMU) networks. We are also conducting rigorous evaluation using the IIT campus microgrid as well as a high-fidelity testbed combining network emulation and power system simulation.
Presented at the Illinois ITI Trust and Security/Science of Security Seminar, March 15, 2016.
Modern industrial control systems (ICSes) are increasingly adopting Internet technology to boost control efficiency, which unfortunately opens up a new frontier for cyber-security. People have typically applied existing Internet security techniques, such as firewalls, or anti-virus or anti-spyware software. However, those security solutions can only provide fine-grained protection at single devices. To address this, we design a novel software-defined networking (SDN) architecture that offers the global visibility of a control network infrastructure, and we investigate innovative SDN-based applications with the focus of ICS security, such as network verification and self-healing phasor measurement unit (PMU) networks. We are also conducting rigorous evaluation using the IIT campus microgrid as well as a high-fidelity testbed combining network emulation and power system simulation.
Illinois Lablet Information Trust Institute, Joint Trust and Security/Science of Security Seminar, by Dong (Kevin) Jin, March 15, 2016.