COMPUTERSCIENCE

RRP Edge Computing System

Guangli Dai, Pavan Kumar Paluri, Albert M. K. Cheng University of Houston, Texas, USA

- Outline
 - Motivation
 - **■Edge Computing System (ECS)**
 - □ Regularity-based Resource Partition (RRP)
 - Architecture
 - **RRP-ECS**
 - □Centralized Task-Partition Architecture
 - ■Theoretical obstacles and our answer
 - □ Regular-Partition Periodic Task Mapping (RPM)
 - □ Regular-Partition Compositional Task Mapping (RCM)

Speaker: Guangli Dai

Background:

- Internet of Things (IoT)
- Applications that need more computational power and lower latency.
- e.g.: Smart Surveillance, Real-time City transportation analysis.

http://www.trafficvision.com

Why Edge Computing System?

- Local connection
- Low latency
- Large bandwidth

The Internet of Thing Architecture and Fog Computing

[Bonomi et al. 2012]

What can Regularity-based Resource Partition (RRP) model offer?

- Efficiency:
 - Physical computing resource -> multiple partitions (Magic7, MulZ).
 - Scheduler: Partition-time table.
- Security:
 - Independent partitions with fixed shares of CPU.
- Uniform measurement:
 - Availability factor α and regularity k

Saves time in scheduler by using PT(Partition - Time slice) table. The table is initialized during the booting.

Partition	Time Slice	
P1	0	
P2	1	
P1	2	
so on		

Quantum=10Millisecs

https://wiki.xen.org/wiki/Xen_Project_Software_Overview

How to construct an RRP-ECS?

What are tasks for smart objects?

- 1. Basic control tasks: fundamental and low-cost.
- 2. High-level intensive tasks: e.g., build neural network based on the data collected.

How to construct an RRP-ECS?

Centralized Task-Partition Architecture

- Transparency
- Easy to implement with Xen
- Portability

Proposed Architecture

App	App	Арр	App	
Gues	Suest OS Gu		uest OS	
Hypervisor				
Hardware				

Existing Xen Architecture

Χ

Centralized Task-Partition Architecture

- upload()
- map()
- dispatch()
- upload_cloud()

map():

- Scheduling tasks on a partition is the same as that on a core.
- Find a partition a task should be assigned to.
- Similar to an online Multiple Knapsack Problem (MKP).


```
Schedulability test:
```

For each task T_j ,

 c_i : worst case execution time (WCET) of T_i .

 p_i : relative deadline of T_i .

 d_j : period of task T_j .

Theorem 2: A task set T is schedulable on a regular partition

$$\mathbb{P}_j$$
 if

$$\sum_{i=1}^{|T|} \frac{c_i}{\min\{d_i, p_i\}} \le \alpha_j \tag{1}$$

Regular-Partition Periodic Task Mapping (RPM)

Constraints:

- •The sum of the size of items put into a partition must be smaller than its capacity.
- •The information of an item is not available until its arrival time R_i .
- •Fair bin and no migration

Goal: Maximize the values gained

Regular-Partition Compositional Task Mapping (RCM)

- Include sporadic tasks into the system
- After D_j , task T_j leaves the system forever.

What makes RPM and RCM different?

- 1. Online model.
- 2. Both the bin capacity and item size here do not have a basic unit (no integer assumption).
- 3. Irremovable entities and fair constraints.
- 4. In RCM, items leave the bin.

Algorithm Best Fit (BF):

Always find the partition that can just accommodate the task.

Lower bound of Best Fit:

With the same partition set, if the optimal algorithm can accommodate the whole task set, BF can at least accommodate half of it.

Algorithm Best Fit (BF) competitive ratio $\frac{1}{2}$ on accommodating sequence.

Performance in RPM

Q&A

Thank you!

The New Architecture model

- Based on existing Xen interface.
- Introduces a new virtualized layer between the domains and vcpus, what we call Partitions.
- Partitions contain VCPUs that contain all the task parameters (relative deadline, absolute deadline and period of the task).
- In Xen, each VCPU is regarded as a single task and we are going to abide by this concept.