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Motivation

• 1. Rising cyber attacks toward Internet-of-Thing(IoT) 
systems / embedded systems   

• 2. Insufficient traditional intrusion detection methods
• 3. Migration of ML from cloud to edge
 



Past Work

1. Timing analysis
2. Physical model verification
3. Packet encryption
4. Communication frequency 



Our Work
1. Separate intrusion 
detection system and 
target system
2. ML model for state 
verification
3. Real-time suitability 
optimization of ML library 
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Two Analyses
• Timing Analysis

• Execution time of certain paths in program code
• Communication delay between the detector and controller
(Timestamps of communication in packets under 
monitoring)

• Third Party Model Verification
• Internal Physical Telemetries
• External Physical Telemetries



Detection AlgorithmPacket arrival 
timeliness validity 
(detector  

blockingly wait; 
exclude packet 
buffering delay)

Execution time 
validity

ML model 
inference 
comparison 
   



Fusion of Analyses
• Assign weights for thresholds of different detection metrics

• Fuse to obtain entire detection threshold

• Counter stealthy attack



Increased Isolation
1. Between application space and OS kernel space
(execution time information managed by kernel)

2. Between controller and detector

3. Between internal and external physical state data sources
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Edge Computing

Cloud ComputingEdge Computing
Intermediate 

Service

• Large streaming data inputs
• Data privacy concerns
• Lower latencies

Why does ML move? 

• Real-Time features of ML API on edge
• Shorter average execution time
• Tighter worst case execution time 

(WCET)

Network Network



Real-time Optimization for ML Library

• 1. Insufficient real-time predictability of keras and original 
Caffe libraries

• 2. Reducible detection delay
- promptness of detection
- compatibility with high sampling rate of control system 

   



ML Libraries
1. Keras (Tensorflow backended) 

- Interpreter-based language

- No real-time control of dynamic memory management

2. Caffe 
- Native C/C++ language

- Real-time control of dynamic memory management

3. Enhanced Caffe
- Remove third party library invocation functions in source code

- Remove multi-core support



RT Performance Comparison
Keras vs. Original Caffe
Average execution time 

- 4:1
Stadard deviation of execution time 

- less varying : much more varying

RT-Enhanced Caffe vs. original Caffe
Average execution time

- 1: 6 
Standard deviation of execution time

- 1:25 (comparison between the minimum 
values)
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Application for Intrusion Detection

• 1. Solar power system
• 2. Power output 

estimation
• 3. Inverter controlled by 

DSP (embedded system) 
• 4. Inverter is emulated by 

Pi3 B



Model Preparation

• Model training
- on HPC system with GPU support
- Keras tensorflow backended
- model converted into caffe compatible format

• Model inference
- on raspberry Pi 

RT predictability; embedded system; power 
efficiency; ML infrastructure support  



Experiment of Intrusion Detection 
System Verification model:

1. Use ANN.
2. Use RT-enhanced Caffe 
library.
3. Training based on practical 
industrial data from ABB
4. Mode accuracy: 0.891 
(explained variance score)

Simulated Attack:
Simulated execution time 
variation by sleeping time 

Output Power Telemetries Output Power Prediction 
and Execution Time 
Threshold Comparison



Experiment Configuration
• 2kw maximum model output magnitude; percentage of 

prediction error threshold: 1%, 5%, 10%.
• 10ms valid execution time; percentage of execution time 

deviation threshold: 0.1%,1%,10%
• Communication delay upper bounded 2.7ms  
• 2500 samples of timing and ML prediction each experiment run
• 80% samples with intrusion(20% samples with timing deviation 

less than the smallest timing threshold), 20% without intrusion



Results
1. Inverter ouptout power deviation 
threshold larger, 

FP smaller
FN larger
accuracy decreases    

2. Timing threshold larger, 
FP smaller
FN larger
accuracy decreases

3. False positive and false negative rate 
vary in opposite directions



Conclusion
1. We enhanced prior intrusion detection based on timing
analysis via ML model verification.

2. We conducted experiments to demonstrate its effectiveness 
based on practical industrial data. 

3. We investigated the trade-off between FP and FN rates when 
selecting the detection thresholds of WCET and ML model output.
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Future Work
• Timing analysis based cyber protection

• Network stack
• User library for open source programs
• Runtime library
• OS Kernel
• Parametric timing analysis
• Safe-mode transition
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