
Machine Learning Enhanced Real-Time
Intrusion

Detection Using Timing Information

Hang Xu, Frank Mueller Mithun Acharya, Alok Kucheria

Outline

1. Motivation
2. Detection Analyses
3. RT Performance of ML Library
4. Application and Experiments
5. Future Work and Ackownledgement

Motivation

• 1. Rising cyber attacks toward Internet-of-Thing(IoT)
systems / embedded systems

• 2. Insufficient traditional intrusion detection methods
• 3. Migration of ML from cloud to edge

Past Work

1. Timing analysis
2. Physical model verification
3. Packet encryption
4. Communication frequency

Our Work
1. Separate intrusion
detection system and
target system
2. ML model for state
verification
3. Real-time suitability
optimization of ML library

Outline

1. Motivation
2. Detection Analyses
3. RT Performance of ML Library
4. Application and Experiments
5. Future Work and Ackownledgement

Two Analyses
• Timing Analysis

• Execution time of certain paths in program code
• Communication delay between the detector and controller
(Timestamps of communication in packets under
monitoring)

• Third Party Model Verification
• Internal Physical Telemetries
• External Physical Telemetries

Detection AlgorithmPacket arrival
timeliness validity
(detector

blockingly wait;
exclude packet
buffering delay)

Execution time
validity

ML model
inference
comparison

Fusion of Analyses
• Assign weights for thresholds of different detection metrics

• Fuse to obtain entire detection threshold

• Counter stealthy attack

Increased Isolation
1. Between application space and OS kernel space
(execution time information managed by kernel)

2. Between controller and detector

3. Between internal and external physical state data sources

Outline

1. Motivation
2. Detection Analyses
3. RT Performance of ML Library
4. Application and Experiments
5. Future Work and Ackownledgement

Edge Computing

Cloud ComputingEdge Computing
Intermediate

Service

• Large streaming data inputs
• Data privacy concerns
• Lower latencies

Why does ML move?

• Real-Time features of ML API on edge
• Shorter average execution time
• Tighter worst case execution time

(WCET)

Network Network

Real-time Optimization for ML Library

• 1. Insufficient real-time predictability of keras and original
Caffe libraries

• 2. Reducible detection delay
- promptness of detection
- compatibility with high sampling rate of control system

ML Libraries
1. Keras (Tensorflow backended)

- Interpreter-based language

- No real-time control of dynamic memory management

2. Caffe
- Native C/C++ language

- Real-time control of dynamic memory management

3. Enhanced Caffe
- Remove third party library invocation functions in source code

- Remove multi-core support

RT Performance Comparison
Keras vs. Original Caffe
Average execution time

- 4:1
Stadard deviation of execution time

- less varying : much more varying

RT-Enhanced Caffe vs. original Caffe
Average execution time

- 1: 6
Standard deviation of execution time

- 1:25 (comparison between the minimum
values)

Outline

1. Motivation
2. Detection Analyses
3. RT Performance of ML Library
4. Application and Experiments
5. Future Work and Ackownledgement

Application for Intrusion Detection

• 1. Solar power system
• 2. Power output

estimation
• 3. Inverter controlled by

DSP (embedded system)
• 4. Inverter is emulated by

Pi3 B

Model Preparation

• Model training
- on HPC system with GPU support
- Keras tensorflow backended
- model converted into caffe compatible format

• Model inference
- on raspberry Pi

RT predictability; embedded system; power
efficiency; ML infrastructure support

Experiment of Intrusion Detection
System Verification model:

1. Use ANN.
2. Use RT-enhanced Caffe
library.
3. Training based on practical
industrial data from ABB
4. Mode accuracy: 0.891
(explained variance score)

Simulated Attack:
Simulated execution time
variation by sleeping time

Output Power Telemetries Output Power Prediction
and Execution Time
Threshold Comparison

Experiment Configuration
• 2kw maximum model output magnitude; percentage of

prediction error threshold: 1%, 5%, 10%.
• 10ms valid execution time; percentage of execution time

deviation threshold: 0.1%,1%,10%
• Communication delay upper bounded 2.7ms
• 2500 samples of timing and ML prediction each experiment run
• 80% samples with intrusion(20% samples with timing deviation

less than the smallest timing threshold), 20% without intrusion

Results
1. Inverter ouptout power deviation
threshold larger,

FP smaller
FN larger
accuracy decreases

2. Timing threshold larger,
FP smaller
FN larger
accuracy decreases

3. False positive and false negative rate
vary in opposite directions

Conclusion
1. We enhanced prior intrusion detection based on timing
analysis via ML model verification.

2. We conducted experiments to demonstrate its effectiveness
based on practical industrial data.

3. We investigated the trade-off between FP and FN rates when
selecting the detection thresholds of WCET and ML model output.

Outline

1. Motivation
2. Detection Analyses
3. RT Performance of ML Library
4. Application and Experiments
5. Future Work and Ackownledgement

Future Work
• Timing analysis based cyber protection

• Network stack
• User library for open source programs
• Runtime library
• OS Kernel
• Parametric timing analysis
• Safe-mode transition

Acknowledgement

This work was funded in part by NSF grants 1329780,
1525609, and 1813004.

Thank you!

