



# Network Slicing as an Ad-Hoc Service

Opportunities and Challenges in Enabling
 User-Driven Resource Management in 5G

Madhumitha Harishankar
Patrick Tague
Carlee Joe-Wong











#### **Yet Connectivity is Uncertain**

- Users increasingly rely on ubiquitous connectivity
- But limited influence over their Mobile Experience
  - Erratic streaming quality
  - Unpredictable and disruptive lags
  - Call drops
  - Typically worsens with mobility

The user is unable to influence the resources allocated to their session and must contend with complete uncertainty about session performance.

#### 5G aims to provide Reliable Connectivity

- Highly diversified network requirements of emerging applications
- E.g. Videoconferencing <150ms, Tactile Internet <5ms
- Key Architectural Advancements in Networking
  - Virtualized Network Functions (Mobility Management, C-RAN etc)
  - Separation of Control/Data plane resulting in dynamic programmability (SDN)

**Emergence of Network Slicing as an Architectural Solution** 

#### The Slicing Paradigm

- Virtual network slices corresponding to different Service Level Agreements
- Slices of varying depth, with corresponding physical resources allocated
- Note that physical resource limitations still exist



Source: Marquez, Cristina, et al. "How Should I Slice My Network?: A Multi-Service Empirical Evaluation of Resource Sharing Efficiency." *Proceedings of the 24th Annual International Conference on Mobile Computing and Networking.* ACM, 2018.

#### Maturity of Network Slicing Research



#### **Current Slicing Models**

- Slices corresponding to SLAs
  - Business to Customer (B2C)
  - For instance, IoT slice, V2I slice, Videoconferencing slice etc.
- Slices corresponding to Content Providers
  - Business to Business (B2B)
  - For instance, Netflix slice, Youtube slice, Skype slice etc.
- Access policy
  - Physical resources backing a slice are finite
  - Who gets admitted to a slice?
  - Reliable connectivity depends on this

#### Slice Admittance and Service Reliability

- B2C SLA based slices
  - Must forecast applicable slice (i.e. QoS needs) up-ahead which can be infeasible (Realtime applications, IoT use-cases)
- B2B Content-provider model
  - Users rely on content-providers to procure slices for their applications

In both cases, the centralized entity solely prioritizes users for admittance to a slice. Users hence exert limited influence over their connectivity.

#### **Approach: Incentive-Aware Slice Admission**

- Admit users to slices based on who needs it most
  - Align users' utility for desired SLA with their willingness to pay via incentive mechanism design
  - Capture user valuations for SLA spontaneously as and when they engage in application use
  - Monetize this as a form of admission control
  - User-Operator win-win

Users drive their slice admittance (and thereby quality of experience) with their real-time utility and stated valuations.

#### Slicing as a Service for Edge Entities

- Offer slicing as a realtime service for session-oriented SLAs
  - Directly to end-users
  - Arbitrary application specific SLAs may be accommodated
  - Users' value for resources influences their valuations
  - Valuations influence slice admittance
  - Preference-based slice admittance instead of generic network policy
  - Made possible today because of maturity of virtualization

Ask and Pay for a session's required resources in real time.

#### **Incentive Mechanism Design**

- Session-level slice characteristics include
  - Bandwidth/Latency required
  - Duration of session
  - Location of access (mobility)
- Incentivize truthful declaration
- Compute slice allocations that maximize collective welfare
- Compute allocations quickly for usability
- Account for opportunity cost of realtime admittance
- Charge users for what they actually use

### A Combinatorial Auction Approach for Reducing Last-Mile Uncertainty in the Performance of Realtime Applications

- Realtime applications especially benefit from SLA guarantees
  - Inflexible resource needs (low latency, no buffering)
- Reconcile changing resource demand and limited supply with periodic and fast auctions
  - Combinatorial auction modeling time and location as dimensions
  - Exploit real-time nature to compute winning slice allocations quickly
  - Incentivize truthfulness in user-stated slice requirements and valuations by accounting for expected future bids

But is it feasible to make application-oriented performance guarantees in the wireless link?

#### **Assessing Practical Viability of RAN Slicing**

- How can we forecast "available resources" and ensure that SLA guarantees are met for sessions of admitted users?
  - Uncertainty inherent in wireless links (e.g. fading effects)
  - Links are further affected by presence of other links (congestion externalities)
  - How many users and slices can we accommodate while ensuring performance isolation?
- WiFi experiment Cafe scenario
  - One AP 802.11g
  - ~50 clients initiating multimedia traffic on the network (Video/Audio/Realtime Conferencing) and web browsing

#### **Preliminary Results - Congestion without AC**



#### Preliminary Results - Feasibility of meeting guarantees

- With incentive-aware admission control:
  - Number of admitted clients in the network \*increase\* =>IA
  - Network throughput \*increases\* => AC
  - SLAs of Realtime Applications are entirely met => AC



#### **Open Questions**

- Slicing reduces traffic multiplexing efficiency
  - Resources of a slice are multiplexed only between traffic demand for that slice (rather than between all demand)
- Impact of Ad-hoc slicing on resource efficiency?
- Mobility and slicing?

#### Multiplexing Efficiency as a function of Reconfiguration interval span



Source: Marquez, Cristina, et al. "How Should I Slice My Network?: A Multi-Service Empirical Evaluation of Resource Sharing Efficiency." *Proceedings of the 24th Annual International Conference on Mobile Computing and Networking*. ACM, 2018.

## Thank you. Questions?