Supporting Resiliency and Timeliness in Edge Applications with Dispersed Computing

Aaron Paulos

TREC4CPS Invited Talk

December 11, 2018

This work is being supported by DARPA under Contract No. HR0011-17-C-0049. The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Raytheon BBN Technologies

Outline

Introductions

- Research Thrusts and CONOPS
- Initial Proof of Concept Results
- Takeaways

A group of ~20 researchers *focused on dynamically changing*, *adaptive distributed systems problems*

- E.g., information management, cyber-physical, cross-domain and federation
- With focus on QoS, Survivability and Resilience, Modeling and Analytics

DARPA Dispersed Computing Proposer's Day Vision [1]

NCP Examples: Programmable Network Elements, Sensors w/ Embedded Programmable Processors, Micro/Nanoclusters, Smart Phones

[1] Dispersed Computing, https://www.darpa.mil/attachments/DispersedComputingProposersDay.pdf

<u>Mission-Aware</u> <u>Adaptive</u> <u>Placement</u> of Data and Tasks

- Scalable, multi-layer, distributed resource mgmt. system
 - Calculate optimal mission-oriented task/data placement
 - Adaptively migrate application tasks and data
 - Monitor and manage compute/storage resources

Potential Benefits for Edge Computing and Cyber Physical Systems

- Algorithmic and middleware basis to *reassign elasticity* and load balancing into the network
- Decentralize and disperse strategic and tactical decisions making to *optimize bandwidth, CPU and storage use*
- Extensively embed mission-level requirements into decision making to *maximize mission success/resilience*

Outline

- Introductions
- Research Thrusts and CONOPS
- Initial Proof of Concept Results
- Takeaways

Raytheon BBN Technologies

Extend DCOP to conduct multi-criteria optimizations that produce a pareto frontier of mission-focused solutions for many applications and objectives.

2 Extend VM packing and consistent hashing techniques with mission affinities to enable fast in-region responses to failures and changes in demand.

Develop middleware and an Aggregate Program (AP) to structure global and regional algorithms, sense and share state and failures, and manage tasks/data.

10

3

Apply control theoretic analysis to global/regional algorithms and the Agent at design time to *identify potential sources of volatility that may destabilize MAP*.

4

11

Putting it all together!

Without DCOMP

- Authoritative application resides in data center
- Long-haul links are used to access service

Prior to DCOMP/MAP, data and tasks are centralized in the data center

Concept of Operation (1/4)

Raytheon BBN Technologies

- Leaders and regions are designated
- Initial resource sharing begins

1 – Initially organize NCPs into regions, with *region leaders* and *load-balancing gateways*

Concept of Operation (2/4)

Raytheon BBN Technologies

First round of DCOP

- Leaders deploy new services in network
- New load is balanced across new services

2 – Leaders will pre-position tasks/data at NCPs

- Incorporate mission requirements and application affinity
- Push out DNS zone updates to reference regional LBs

Concept of Operation (3/4)

3a. – Periodically calculate task/data placement

- Monitor application usage and in-network resources
- Periodically determine solution for task and data placement

Concept of Operation (4/4)

Raytheon BBN Technologies

- Regional leaders execute new allocation plan
- New load on system is loadbalanced into the network
- Overload or failure may be directed to overflow regions

3b. – Quickly execute intra-regional algorithms

- Quickly provision global solution in region
- Tactically recover from failures and respond to increased load

Outline

- Introductions
- Research Thrusts and CONOPS
- Initial Proof of Concept Results
- Takeaways

Lo-Fi Simulation Testing: 100 NCP and 500 Clients

- Backhaul edge clients back to large data center
- MAP Agents on 99 NCPs and 1 in datacenter
- 3 pools of ~33 clients attached to the 5 edge regions
 - 24 minute demand for three simulated applications (50kbps each)

Lo-Fi Simulation Testing: Architectural Scaling (100NCPs, 500clients)

Live threads Daemon threads

HW/SW Configuration

Raytheon BBN Technologies

- c5.18xlarge
 - 72 vCPU, 144GiB
- JVM heap 64MB

Observations

- Simulation and Agent are stable at test scale
- Memory growth is linear here, but well below heap bound
- Can fully simulate Program scale w/ lo-fi testbed

Lo-Fi Simulation Testing: Estimating Backhaul Reduction (100NCP,500clients)

Raytheon BBN Technologies

- w/ MAP observed 87% reduction in data center requests
 - Service migration and full DNS delegation completed ~5 minutes into test
- Estimate 38% hop count reduction against test topology
 - Note that backhaul reduction is a function of topology

Client

Pool

B0

B2

B4

C0

C2

C4

D0

D2

D4

E0

E2

E4

F0

F2

F4

Outline

22

- Introductions
- Research Thrusts and CONOPS
- Initial Proof of Concept Results
- Takeaways

Investigating a *middleware* solution for dispersing computation and data into in-network NCPs

- Relocates data and tasks closer to use
 - Based on multi-layered distributed decision making
 - Has its algorithmic basis in DCOP, consistent hashing, control theory

Near term goal is release an open architecture for experimentation

□ Interested in community involvement and new research thrusts

Discussion: Application to Applications with Edge Components

- New compute paradigm has the potential disrupt dependency on backhauled data-centers
 - Many potential benefits in QoS and resiliency for infrastructure and applications
- Motivates new thought in many areas
 - Algorithms for applications, e.g., partitioning tasks and data
 - Methods for managing applications, e.g., role of stakeholders
 - Security and trustworthiness, e.g., multi-tenancy

Regional Load Plot - Measured Load across Active Containers

Region C DCOP Plan(s) with Regional Load

