
INTERACTIVE DEVELOPER
SUPPORT FOR
APPLICATION SECURITY
Helping developers to interactively detect,
understand, and mitigate security vulnerabilities in
their code.

Heather Richter Lipford
University of North Carolina at Charlotte

Software Security
Being resistant to malicious attacks which exploit security
bugs in software.

Application Security Process

Implementation

Unit Testing
Code Review

Fix Bugs

Triage

Manual
Inspection

Audit

Pen testing
Dynamic Analysis
Static Analysis

Development Team Application Security Team

Bug
Tracking

Tyler Thomas, Heather Lipford, and Bill Chu. From the eyes and ears of auditors: An investigation of
security during application development. In preparation.

Out of the security loop

Jing Xie, Heather Lipford, and Bill Chu. Why do programmers make security errors?
In Proc. VL/HCC, 2011.

Developers rely on other parties/processes who they believe should
handle all security concerns.

Developers believed that security issues do not apply to their
particular development context.

A range of factors motivate and constrain attention paid to security
concerns.

Disconnect between general security knowledge and
concrete secure programming practices

Communicating with developers

Convince developers there is a real problem
Motivate stakeholders to fix the vulnerability
 Explain how to remediate
 Train for the future

 Security champion
 Member of the development team serving as
 an important liaison and advocate for security

“I think a lot of what I deal with is not necessarily the technology, it’s the how you
communicate it effectively to developers. My boss likes to joke that we are 60
percent psychologists and 40 percent security professionals.”

Moving security “to the left”

 Engage developers with security within their existing tools
and processes.
Reduce the burden of security work by communicating

based on their knowledge, and utilizing automated
support as much as possible.
Utilize developer knowledge of the application context to

customize security tool support.

“I would say that the big challenge there is that security and development have
traditionally been disjointed and they have been separate teams. Security is the
watchdogs, development does the work and all security has ever done is scan stuff. So
write code, ask questions later. And we have to change that.”

Code
Review

Unit
testing Coding

Interactions and Touchpoints

Notification: concrete, contextual, actionable communication with
developers

Auto-suggestion and automation: recommending security actions
that developers can choose to adopt.

Annotation: Gathering security-related information from developers

Touchpoint #1: Coding
Interactive Static Analysis
Increase developers’ awareness of security vulnerabilities, and their
secure programming knowledge and behavior.
 Vulnerabilities related to lack of input validation, output encoding, or

SQL injection
 Access control vulnerabilities

ASIDE: Application Security in the IDE

Interaction: Notification
Warnings and messages need to be:
 Understandable by developers with range of security

expertise
 Consistent in their structure and presentation
 Contextual descriptions based upon the relevant lines of code
 Actionable guidance regarding how to trace and resolve the

vulnerability

Interaction: Auto-suggestion
 Automatically insert sanitization code based on the type of

input or output chosen
Uses ESAPI validation methods

Interaction: Annotation

1,655 2.5
days

3,416 922

Jing Xie, Bill Chu, and Heather Lipford. ASIDE: IDE Support for Web Application Security.
In Proc. ACSAC, 2011.

Security Performance – Injection,XSS Security Performance – Injection,

131/143 (92%) taint
sources identified
Remainder due to
JSP/frameworks not
yet supported

118 additional taint
sources identified
94 potentially
exploitable
24 false positives

143 taint sources

Apache Roller

Security Performance – Access Control
Comparison against known access control vulnerabilities

in 6 open source projects
 26 known and 20 zero-day vulnerabilities detected

M: Missing check I: Inconsistent
UT: Untrusted data L: Logic error

Project Known Vul. Known Vul. By
ASIDE-PHP

0-day Vul. by
ASIDE-PHP

Moodle 2.1.0 6[I], 7[L] 6[I] 1[I]
Mybloggie 2.1.3 3[M], 3[UT] 3[M], 3[UT] 15[M]
SCARF 1.0 1[M], 10[UT] 1[M], 10[UT]
Bilboblog 0.2.1 1[UT] 1[UT]
Wheatblog 1.1 1[M] 1[M]
PhpStat 1.5 1[M] 1[M] 4[M]

Jun Zhu, Bill Chu, Heather Lipford, and Tyler Thomas. Mitigating Access Control Vulnerabilities
through Interactive Static Analysis. In Proc. SACMAT 2015.

User Behavior
Multiple user studies with advanced students, and two with
professionals

The good:
Raised awareness
 Almost all correct actions
 Liked the quick fixes and help

Needs improvement:
 Vulnerability severity and ranking
Customize fixes

“I'm not a security expert. It offers a
different perspective, so I kind of felt
like one while I was using it, just
because it helps me recognize those
things. It's also training too. I think it
would be really valuable for
developers to be using, especially if
it's detecting vulnerabilities as they
write them.“

“I wished it would give examples of
what the insertion of malicious code/
XSS what it might do. If you say to
someone, someone could go through
the stop sign, that's one thing. If you
say someone could go through the
stop sign and get killed, you see it as a
different severity."

“Here I would like to see numbers
only, but I don't quite see an option
for that. I would probably go ahead
and activate the letters and numbers
quickfix and then modify it so that it's
just numbers.“

Tyler Thomas et. al What Questions Remain? An Examination of How Developers Understand an
Interactive Static Analysis Tool. In Workshop on Security Information Workers, SOUPS 2016.

User Behavior

ASIDE increases awareness of security vulnerabilities,
could improve the practice of secure programming.

ASIDE is unobtrusive and informative.

Successful identification of access control logic, but difficulty tracing
an access control vulnerability.

Needs more examples of exploits and severity of risks.

Automated code generation valuable.

Jing Xie, Heather Lipford, and Bill Chu. Evaluating Interactive Support for Secure Programming. CHI, 2012.
Tyler Thomas et al. A Study of Interactive Code Annotation for Access Control Vulnerabilities. VL/HCC, 2015.

Touchpoint #2: Unit Testing
Dynamic analysis to detect vulnerabilities not found in static
analysis

Detect Cross-Site Scripting (XSS) vulnerabilities due to

improper encoding of untrusted data.
 Automated construction and evaluation of XSS unit tests.
 Notification of exact line number of vulnerable code

Minimize false positives by confirming vulnerabilities via execution.

M. Mohammadi et. al Detecting Cross-Site Scripting Vulnerabilities through Automated Unit Testing. IEEE QRS. 2017.
M. Mohammadi et. al Automatic Web Security Unit Testing: XSS Vulnerability Detection. AST Workshop at ICSE. 2016.

Minimize false negatives by systematically generating attack strings.

Interaction: Automation
Unit Test Extraction
 Control flow analysis to slice the code into execution paths
 Taint analysis to determine injection points of untrusted data

 Attack Generation
 Model “context switching” as a context free grammar
 Generate attack strings using sentences of the grammar

 Attack Evaluation
 Execute attack strings in JWebUnit
 Change Web page title with line number being tested

 Vulnerabilities reported True Positive False Positive

ZAP 31 9 22
XSS Unit Testing 17 17 0

Evaluation on iTrust, open source medical records application

Touchpoint #3: Code Review
Security-oriented code review with static analysis
 Interaction between developers and application security experts

earlier in the process
 Use static analysis (for example, ASIDE) to focus reviews around

detected and mitigated vulnerabilities

How can we support communication between developers

and application security experts?
How effective is code review for improving developer

awareness and practice of application security?

Interaction: Annotation
 Extending Gerrit, an open-source code review tool

Reviewers rate vulnerabilities, leave comments
Developers ask questions and receive feedback

Interactions and Touchpoints
 Coding Unit testing Code review

Notification Vulnerable
practices

Identify vulnerable
code based on test
results

Security
decisions, e.g.
incorrect
remediation

Auto-
suggest

Mitigation
controls, e.g.
input validation
code

Security unit tests
for XSS
vulnerability
detection

Prioritizing issue
review

Annotation Security
decisions, e.g.
access control

Seek developer
input to help
security unit test
generation

Comments and
rationale of
security
decisions.

Research Challenges
 Reducing false positives
 Understanding what developers interpret as a false positive
 Focus on techniques and tools with low false positives
 Utilize contextual information to improve accuracy

 Reducing false negatives
 Characterize false negatives and remaining risk

 Reflect risk assessments
 Prioritize tool feedback and functionality based upon risk

 Incentives
 Understand tool features that discourage interaction
 Understand costs versus benefits of tools and change in process
 Organizational structures and processes that motivate security work

Acknowledgements
Supported by NSF #1318854, 1044745, 1523041

Collaborators:
 Bill Chu
Mahmoud Mohammadi, Madiha Tabassum, Tyler Thomas,

Jing Xie, and Jun Zhu
 Emerson Murphy-Hill and Justin Smith

http://aside.uncc.edu

	Interactive Developer Support for Application Security
	Software Security
	Application Security Process
	Out of the security loop
	Communicating with developers
	Moving security “to the left”
	Interactions and Touchpoints
	Touchpoint #1: Coding
	Interaction: Notification
	Interaction: Auto-suggestion
	Interaction: Annotation
	Security Performance – Injection,
	Security Performance – Access Control
	User Behavior
	User Behavior
	Touchpoint #2: Unit Testing
	Interaction: Automation
	Touchpoint #3: Code Review
	Interaction: Annotation
	Interactions and Touchpoints
	Research Challenges
	Acknowledgements

