

Impact of Security Research on Practice

Özgür Kafalı and Rahul Pandita

Department of Computer Science {rkafali, rpandit}@ncsu.edu

June 3, 2016

Agenda for the Morning

- Part I: Identifying the problem
 - How useful is academic research in solving industry problems?
 - Studies from the literature on impact and perception of research

• Part II: Working towards a solution

- Industry panel: How does industry collaborate with academia regarding security research?
- Group exercise: How do we perceive useful security research?

Motivation

- Software engineering has been around for almost 50 years
- Studies aim at identifying
 - areas of research with substantial impact
 - research methodologies with relatively more success
 - directions that software engineering research should effectively pursue
- No consensus about the impact of software engineering research as a whole upon software development practice
- Incomplete: results based on a subset of cases

Overview of Studies

- Impact Project [Osterweil et al., 2008]
- Practitioner Perception [Lo et al., 2015]
- Developer Beliefs [Devanbu et al., 2016]

Overview of Studies

- Impact Project [Osterweil et al., 2008]
- Practitioner Perception [Lo et al., 2015]
- Developer Beliefs [Devanbu et al., 2016]
- No such study for security research in particular!

IMPACT PROJECT

Impact Project

3 Practitioner Perception

- 4 Developer Beliefs
- 5 Discussion

Overview

- Objective: Determining the Impact of Software Engineering Research on Practice
- Specific aims:
 - What future impacts can we expect?
 - What future directions should SE researchers pursue?
- Team includes academic researchers, industrial researchers, and a broad spectrum of software engineering practitioners
- Areas of investigation:
 - Modern Programming languages
 - Software Configuration Management (SCM)
 - Inspections, Reviews, and Walkthroughs
 - Middleware
 - Software Testing and Analysis

http://www.sigsoft.org/impact.html

Overview

- Objective: Determining the Impact of Software Engineering Research on Practice
- Specific aims:
 - What future impacts can we expect?
 - What future directions should SE researchers pursue?
- Team includes academic researchers, industrial researchers, and a broad spectrum of software engineering practitioners
- Areas of investigation:
 - Modern Programming languages
 - Software Configuration Management (SCM)
 - Inspections, Reviews, and Walkthroughs
 - Middleware
 - Software Testing and Analysis

http://www.sigsoft.org/impact.html

Methodology & Results: SCM

- Managing change in large, complex software systems
- History of landmark contributions: success and failure cases
- Specific case: versioning tools, change sets
- Took time to adopt in practice: cumbersome for large projects

	Academic Research	Industrial Research	Industrial Product				
1972		SCCS (Bell Labs)					
1976		Diff (Bell Labs)					
1977		Make (Bell Labs)					
1980	Variants, RCS (Purdue University)						
1980		Change-sets (Xerox Parc)					
1982	Merging, and/or graph (Purdue University)						
1983		Change-sets (Aide-de-Camp)					
1984	Selection (Grenoble University)						
1985		System model (DSEE)					
1988	First International SCM workshop						
1988	Process support (Grenoble University)						
1988	NSE Workspaces (Carnegie Mellon University; Sun)						
1990		3DFS, nDFS virtual file					
		system (Bell Labs)					
1994		Virtual file system	(ClearCase)				
1994		MultiSite (ClearCase)					
1996		Activity-oriented SCM					
		(Asgard, Bell Core)					
2000	WebDAV/DeltaV (University of Cali	ebDAV/DeltaV (University of California,					
	Irvine, Microsoft, ClearCase,)						

Methodology & Results: Inspections, Reviews ...

- Methodology
 - Identify research on reviews and trace forward organizations that apply them
 - Identify success cases in practice and trace back the impact of research on them
- Success measures from companies such as Allianz, Motorola or IBM up to
 - 95% defect detection rates
 - 50% cost reduction
 - 50% delivery time reduction

IMPACT PROJECT

Impact Trace: NASA Software Engineering Laboratory

#	Impact Item	Medium	Proximity	Impacted event	Documentation
1	Evidence "inspections are useful"	"in the air"	external	Introduction of "basic" inspec-	McGarry
2	Structured Programming	Class (Mills/Basili)	close	tions	McGarry
3	Structured Programming	Class (Mills/Basili)	close		McGarry
4	Formal IBM inspections	Fagan paper [Fagan76]	external	Introduction of Fagan / formal inspections	McGarry
5	Fagan's visit and talks at SEL	Tutorial	Close / In-house		McGarry
6	Inspections useful (in terms of number of defects found)	(internal results)	In-house	Declaration of formal inspections as standard	McGarry

Kafalı and Pandita

Impact of Security Research on Practice

Methodology & Results: Middleware

- Where does successful middleware products originate from?
- Report impact trees as proof
- Resources:
 - Articles
 - Phd theses
 - Technical reports
 - Meeting notes

IMPACT PROJECT

Impact Tree: Java Message Service

Key Findings

- Technology transfer
 - Takes time: 15-20 years from publication to product
 - Impact usually connected to PhD thesis
 - People movement most effective (in either direction)
- Putting ideas "in the air" via meetings / workshops
- Interdisciplinary research
 - Impact traces often include different CS disciplines
 - Sometimes larger impact in an area different than intended by publication, e.g., from operating systems to databases and eventually to object-oriented concepts and application servers

• Challenges (specifically for reviews, but probably generalizable)

- Management support (some ideas take longer time to adopt)
- Technology champion (drive technology, maintain training)
- Convincing developers (time pressure makes adoption harder)

Key Findings

- Technology transfer
 - Takes time: 15-20 years from publication to product Be patient!
 - Impact usually connected to PhD thesis
 - People movement most effective (in either direction)
- Putting ideas "in the air" via meetings / workshops
- Interdisciplinary research
 - Impact traces often include different CS disciplines
 - Sometimes larger impact in an area different than intended by publication, e.g., from operating systems to databases and eventually to object-oriented concepts and application servers

• Challenges (specifically for reviews, but probably generalizable)

- Management support (some ideas take longer time to adopt)
- Technology champion (drive technology, maintain training)
- Convincing developers (time pressure makes adoption harder)

Key Findings

- Technology transfer
 - Takes time: 15-20 years from publication to product Be patient!
 - Impact usually connected to PhD thesis Support students!
 - People movement most effective (in either direction)
- Putting ideas "in the air" via meetings / workshops
- Interdisciplinary research
 - Impact traces often include different CS disciplines
 - Sometimes larger impact in an area different than intended by publication, e.g., from operating systems to databases and eventually to object-oriented concepts and application servers

• Challenges (specifically for reviews, but probably generalizable)

- Management support (some ideas take longer time to adopt)
- Technology champion (drive technology, maintain training)
- Convincing developers (time pressure makes adoption harder)

PRACTITIONER PERCEPTION

Impact Project

4 Developer Beliefs

5 Discussion

"How practitioners perceive the relevance of software engineering research"

10th ESEC-FSE 2015

Number of Software Engineering papers grow over time:

- How do practitioners view software engineering research as a whole?
- What research ideas do practitioners consider to be most important?
- Why practitioners view some research ideas as unwise?

Adapted from author ESEC-FSE presentation slides with permission from authors

"How practitioners perceive the relevance of software engineering research"

10th ESEC-FSE 2015

Number of Software Engineering papers grow over time:

- How do practitioners view software engineering research as a whole?
- What research ideas do practitioners consider to be most important?
- Why practitioners view some research ideas as unwise?

Adapted from author ESEC-FSE presentation slides with permission from authors

Study Methodology

- Use practitioners as a sounding board of high-level research ideas
- Get practitioners feedback on the relevancy of software engineering studies from their perspectives
- Assess the degree-of-disconnect between researcher and practitioners

Adapted from author ESEC-FSE presentation slides with permission from authors

Study Methodology

- Use practitioners as a sounding board of high-level research ideas
- Get practitioners feedback on the relevancy of software engineering studies from their perspectives
- Assess the degree-of-disconnect between researcher and practitioners *Health of software engineering research!*

Adapted from author ESEC-FSE presentation slides with permission from authors

PRACTITIONER PERCEPTION

Adapted from author ESEC-FSE presentation slides with permission from authors

Why Unwise?

- A tool not needed. ...would not be something I would use...
- An empirical study is not actionable. ...since enough is known about common fallacies of this type...
- Generalizability issue. ...lessons learned...can be very specific...
- Scalability issue. ... I dont see this being used for large-scale systems...
- Cost outweighs benefit. ... I believe the cost of implementing and maintain such a solution would be greater...

Why Unwise? Cont...

- Questionable assumptions about inputs or conditions.
 ...Description is often not filled correctly. hence it is unwise to rely on it...
- Another solution seems better. ...I dont think natural language is that important. Instead helping users find the keywords or tags is should be the focus...
- Proposed solution has side effects. ...Drag and drop solutions have always seemed to me as a quick and easy way to write inefficient code...
- Disbelief in a particular technology or methodology. ...I dont believe in design patterns, force fitting something into a pattern is not wise...

Why Unwise? Cont...

- Questionable assumptions about inputs or conditions. ...Description is often not filled correctly. hence it is unwise to rely on it...
- Another solution seems better. ...I dont think natural language is that important. Instead helping users find the keywords or tags is should be the focus...
- Proposed solution has side effects. ...Drag and drop solutions have always seemed to me as a quick and easy way to write inefficient code...
- Disbelief in a particular technology or methodology. ...I dont believe in design patterns, force fitting something into a pattern is not wise...

DEVELOPER BELIEFS

- Impact Project
- 3 Practitioner Perception
- Developer Beliefs
- 5 Discussion

Belief & Evidence in Empirical Software Engineering

ICSE 2016

- Engineers
 - Highly Trained, Opinionated, Professionals
 - Increasing evidence on important SE Issues (but no such thing as goodprogramming.gov)
 - Do software engineers pay attention to evidence? To research?

Adapted from author's ICSE presentation slides with permission

DEVELOPER BELIEFS

Belief & Evidence in Empirical Software Engineering

Adapted from author's ICSE presentation slides with permission

DEVELOPER BELIEFS

Opinion Formation

Adapted from author's ICSE presentation slides with permission

Belief & Evidence in Empirical Software Engineering

- Source of opinions: NOT necessarily Scientific Evidence.
- Developers beliefs vs. Evidence disparity.
- Emphasizes importance of Evidence-based Software Engineering..

Adapted from author's ICSE presentation slides with permission

- Impact Project
- 3 Practitioner Perception
- 4 Developer Beliefs

Borrowing Ideas for Security Research

- How can we apply these ideas to measure the impact of security research as well as the perception of practitioners?
 - What sort of results do practitioners look for in security research?
 - Does it align with the types of studies academic researchers are comfortable doing?