Visible to the public Foundations for Cyber-Physical System ResilienceConflict Detection Enabled

Project Details

Performance Period

Jan 28, 2025

Institution(s)

Vanderbilt University

Sponsor(s)

National Security Agency

Ranked 35 out of 118 Group Projects in this group.
13369 related hits.

The goals of this project are to develop the principles and methods for designing and analyzing resilient CPS architectures that deliver required service in the face of compromised components. A fundamental challenge is to understand the basic tenets of CPS resilience and how they can be used in developing resilient architectures. The proposed approach integrates redundancy, diversity, and hardening methods for designing either passive resilience methods that are inherently robust against attacks and active resilience methods that allow responding to attacks.

Xenofon Koutsoukos is a Professor of Computer Science, Computer Engineering, and Electrical Engineering in the Department of Electrical Engineering and Computer Science at Vanderbilt University. He is also a Senior Research Scientist in the Institute for Software Integrated Systems (ISIS).

Before joining Vanderbilt, Dr. Koutsoukos was a Member of Research Staff in the Xerox Palo Alto Research Center (PARC) (2000-2002), working in the Embedded Collaborative Computing Area.
He received his Diploma in Electrical and Computer Engineering from the National Technical University of Athens (NTUA), Greece in 1993. Between 1993 and 1995, he joined the National Center for Space Applications, Hellenic Ministry of National Defense, Athens, Greece as a computer engineer in the areas of image processing and remote sensing. He received the Master of Science in Electrical Engineering in January 1998 and the Master of Science in Applied Mathematics in May 1998 both from the University of Notre Dame. He received his PhD in Electrical Engineering working under Professor Panos J. Antsaklis with the group for Interdisciplinary Studies of Intelligent Systems.

His research work is in the area of cyber-physical systems with emphasis on formal methods, distributed algorithms, diagnosis and fault tolerance, and adaptive resource management. He has published numerous journal and conference papers and he is co-inventor of four US patents. He is the recipient of the NSF Career Award in 2004, the Excellence in Teaching Award in 2009 from the Vanderbilt University School of Engineering, and the 2011 Aeronautics Research Mission Directorate (ARMD) Associate Administrator (AA) Award in Technology and Innovation from NASA.