Visible to the public EAGER: Creating a Community Infrastructure for Interoperable Emergency ConnectivityConflict Detection Enabled

Project Details
Lead PI:Kaikai Liu
Co-PI(s):Jerry Gao
Younghee Park
Frances Edwards
Performance Period:08/15/16 - 07/31/18
Institution(s):San Jose State University Foundation
Sponsor(s):National Science Foundation
Award Number:1637371
820 Reads. Placed 462 out of 804 NSF CPS Projects based on total reads on all related artifacts.
Abstract: Many areas of the United States are subject to seasonal and cyclical natural disasters like floods, earthquakes and hurricanes, while all areas may experience technological or human-caused events leading to communications disruptions. Following a disaster, it is essential for professional emergency responders to have a comprehensive understanding of the damage in the community in order to prioritize resources to save lives and protect the environment. Failure to develop an accurate picture of community conditions may lead to ineffective allocation of scarce response and rescue resources. Current technologies used for day-to-day emergency response information gathering from the public, such as 9-1-1 calls and social media, are often disrupted by the disaster?s impact, which may persist for days after an event. One of the key factors enabling a coordinated emergency response and community resilience to disaster is rapid communication from community members such as residents, businesses, schools and hospitals to public safety services about community conditions, such as the location of trapped people, collapsed buildings, fires and hazardous materials accidents, highway damage, and traffic congestion. Robust and resilient communication systems incorporating and enhancing existing technologies are the solution. The City of San Jose has recognized the likelihood of post-disaster information deficits which can be resolved through increased connectivity of diverse community elements to public safety communications. Recognizing the presence of privately-owned Smart phones throughout the community, the City is seeking an information gathering and dissemination solution that would enable Smart phone users to maintain communication with public safety services even in disaster conditions. San Jose State University, partnered with the San Jose Office of Emergency Services (OES), proposes to develop a novel method for maintaining connectivity for residents to public safety services. The proposed connectivity and networking technologies will keep citizens connected to vital services and information, and allow them to provide disaster assessment information to public safety agencies. This project will also create a cloud dashboard for emergency responders, and create a comprehensive view of community conditions which leads to an effective emergency response. The prototype system will enable the city's public safety agencies to prioritize emergency response demands and respond quickly, and minimize the catastrophic impact on the City of San Jose and its community and economy. The prevalence of disruptive events across the United States makes the development of a resilient communication solution imperative. The available collaboration with the City of San Jose provides a real-world partner and testbed for new technology applications with nation-wide application potential. As climates change, storms become stronger, sea levels rise, the electricity grid ages and social disruptions increase, time is of the essence for creating a resilient and accessible solution to reliable communication connectivity. This Early Concept Grant for Exploratory Research (EAGER) will solve the key challenges that must be tackled to achieve this timeliness and provide strategies and system solutions to spur emergency awareness, management, and preparedness. Finally, all code and data in this project will be released openly, supporting future research, development, and training. First responders to disasters need a complete picture of the community's status in order to accurately assess the condition of the inhabitants and organize available resources to save lives, protect the environment and prevent further damage in the community. In normal circumstances public safety services rely on 9-1-1 calls and social media to gather information from residents about community conditions. However, under disaster conditions, these normal communication methods will be interrupted, including landline and cell phones, internet connectivity and power. In these circumstances, novel systems must be available to substitute for the lost connectivity, to allow residents to connect to the public safety answering point, and to allow the Emergency Operations Center to collect and aggregate critical information across sectors to ensure that lifesaving operations are conducted expeditiously. The solution to managing risks to disaster-prone communities includes integrating existing technologies, applications, data and e-services in sustainable networks that will support emergency communications even in catastrophic events. This research proposes to develop a community infrastructure for interoperable emergency connectivity that can operate in austere conditions, provide its own power, and create linkages throughout the community and across jurisdictional boundaries. This project will deploy the edge devices in local communities with multi-modal communication modules as well as an external long range radio. The proposed resilient and participatory networking framework on top of the remote edge devices will enable collaborative communication as well as participatory sensing. To solve current deficiencies in the ability of allowing city emergency responders to control and automate the remote edge devices, this project extends existing cloud orchestration frameworks to edge devices that are agnostic to the network media. For this demonstration project, the central cloud deployed in the City of San Jose?s Emergency Operations Center will control the remote edge devices, and be responsible for resilient quality testing, automatic validation, disaster assessment, resource allocation, and the automation of remote edge devices.