Biblio

Found 2705 results

Filters: First Letter Of Last Name is G  [Clear All Filters]
2017-10-13
Weichslgartner, Andreas, Wildermann, Stefan, Götzfried, Johannes, Freiling, Felix, Glaß, Michael, Teich, Jürgen.  2016.  Design-Time/Run-Time Mapping of Security-Critical Applications in Heterogeneous MPSoCs. Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems. :153–162.

Different applications concurrently running on modern MPSoCs can interfere with each other when they use shared resources. This interference can cause side channels, i.e., sources of unintended information flow between applications. To prevent such side channels, we propose a hybrid mapping methodology that attempts to ensure spatial isolation, i.e., a mutually-exclusive allocation of resources to applications in the MPSoC. At design time and as a first step, we compute compact and connected application mappings (called shapes). In a second step, run-time management uses this information to map multiple spatially segregated shapes to the architecture. We present and evaluate a (fast) heuristic and an (exact) SAT-based mapper, demonstrating the viability of the approach.

2017-08-22
Garcia, Sebastian, Pechoucek, Michal.  2016.  Detecting the Behavioral Relationships of Malware Connections. Proceedings of the 1st International Workshop on AI for Privacy and Security. :8:1–8:5.

A normal computer infected with malware is difficult to detect. There have been several approaches in the last years which analyze the behavior of malware and obtain good results. The malware traffic may be detected, but it is very common to miss-detect normal traffic as malicious and generate false positives. This is specially the case when the methods are tested in real and large networks. The detection errors are generated due to the malware changing and rapidly adapting its domains and patterns to mimic normal connections. To better detect malware infections and separate them from normal traffic we propose to detect the behavior of the group of connections generated by the malware. It is known that malware usually generates various related connections simultaneously and therefore it shows a group pattern. Based on previous experiments, this paper suggests that the behavior of a group of connections can be modelled as a directed cyclic graph with special properties, such as its internal patterns, relationships, frequencies and sequences of connections. By training the group models on known traffic it may be possible to better distinguish between a malware connection and a normal connection.

2017-05-18
Giang, Nam Ky, Leung, Victor C.M., Lea, Rodger.  2016.  On Developing Smart Transportation Applications in Fog Computing Paradigm. Proceedings of the 6th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications. :91–98.

Smart Transportation applications by nature are examples of Vehicular Ad-hoc Network (VANETs) applications where mobile vehicles, roadside units and transportation infrastructure interplay with one another to provide value added services. While there are abundant researches that focused on the communication aspect of such Mobile Ad-hoc Networks, there are few research bodies that target the development of VANET applications. Among the popular VANET applications, a dominant direction is to leverage Cloud infrastructure to execute and deliver applications and services. Recent studies showed that Cloud Computing is not sufficient for many VANET applications due to the mobility of vehicles and the latency sensitive requirements they impose. To this end, Fog Computing has been proposed to leverage computation infrastructure that is closer to the network edge to compliment Cloud Computing in providing latency-sensitive applications and services. However, applications development in Fog environment is much more challenging than in the Cloud due to the distributed nature of Fog systems. In this paper, we investigate how Smart Transportation applications are developed following Fog Computing approach, their challenges and possible mitigation from the state of the arts.

2016-10-24
2016-12-14
2017-10-13
Barthe, Gilles, Farina, Gian Pietro, Gaboardi, Marco, Arias, Emilio Jesus Gallego, Gordon, Andy, Hsu, Justin, Strub, Pierre-Yves.  2016.  Differentially Private Bayesian Programming. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :68–79.

We present PrivInfer, an expressive framework for writing and verifying differentially private Bayesian machine learning algorithms. Programs in PrivInfer are written in a rich functional probabilistic programming language with constructs for performing Bayesian inference. Then, differential privacy of programs is established using a relational refinement type system, in which refinements on probability types are indexed by a metric on distributions. Our framework leverages recent developments in Bayesian inference, probabilistic programming languages, and in relational refinement types. We demonstrate the expressiveness of PrivInfer by verifying privacy for several examples of private Bayesian inference.

2017-07-24
Ghassemi, Mohsen, Sarwate, Anand D., Wright, Rebecca N..  2016.  Differentially Private Online Active Learning with Applications to Anomaly Detection. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. :117–128.

In settings where data instances are generated sequentially or in streaming fashion, online learning algorithms can learn predictors using incremental training algorithms such as stochastic gradient descent. In some security applications such as training anomaly detectors, the data streams may consist of private information or transactions and the output of the learning algorithms may reveal information about the training data. Differential privacy is a framework for quantifying the privacy risk in such settings. This paper proposes two differentially private strategies to mitigate privacy risk when training a classifier for anomaly detection in an online setting. The first is to use a randomized active learning heuristic to screen out uninformative data points in the stream. The second is to use mini-batching to improve classifier performance. Experimental results show how these two strategies can trade off privacy, label complexity, and generalization performance.

2018-05-27
2018-05-15
Osama Ennasr, Guoliang Xing, Xiaobo Tan.  2016.  Distributed time-difference-of-arrival (TDOA)-based localization of a moving target. Proceedings of the 55th IEEE Conference on Decision and Control. :2652-2658.
2017-09-19
Goyal, Shruti, Bindu, P. V., Thilagam, P. Santhi.  2016.  Dynamic Structure for Web Graphs with Extended Functionalities. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. :46:1–46:6.

The hyperlink structure of World Wide Web is modeled as a directed, dynamic, and huge web graph. Web graphs are analyzed for determining page rank, fighting web spam, detecting communities, and so on, by performing tasks such as clustering, classification, and reachability. These tasks involve operations such as graph navigation, checking link existence, and identifying active links, which demand scanning of entire graphs. Frequent scanning of very large graphs involves more I/O operations and memory overheads. To rectify these issues, several data structures have been proposed to represent graphs in a compact manner. Even though the problem of representing graphs has been actively studied in the literature, there has been much less focus on representation of dynamic graphs. In this paper, we propose Tree-Dictionary-Representation (TDR), a compressed graph representation that supports dynamic nature of graphs as well as the various graph operations. Our experimental study shows that this representation works efficiently with limited main memory use and provides fast traversal of edges.

2017-04-03
Genkin, Daniel, Pachmanov, Lev, Pipman, Itamar, Tromer, Eran, Yarom, Yuval.  2016.  ECDSA Key Extraction from Mobile Devices via Nonintrusive Physical Side Channels. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :1626–1638.

We show that elliptic-curve cryptography implementations on mobile devices are vulnerable to electromagnetic and power side-channel attacks. We demonstrate full extraction of ECDSA secret signing keys from OpenSSL and CoreBitcoin running on iOS devices, and partial key leakage from OpenSSL running on Android and from iOS's CommonCrypto. These non-intrusive attacks use a simple magnetic probe placed in proximity to the device, or a power probe on the phone's USB cable. They use a bandwidth of merely a few hundred kHz, and can be performed cheaply using an audio card and an improvised magnetic probe.

2017-05-18
Stanciu, Valeriu-Daniel, Spolaor, Riccardo, Conti, Mauro, Giuffrida, Cristiano.  2016.  On the Effectiveness of Sensor-enhanced Keystroke Dynamics Against Statistical Attacks. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :105–112.

In recent years, simple password-based authentication systems have increasingly proven ineffective for many classes of real-world devices. As a result, many researchers have concentrated their efforts on the design of new biometric authentication systems. This trend has been further accelerated by the advent of mobile devices, which offer numerous sensors and capabilities to implement a variety of mobile biometric authentication systems. Along with the advances in biometric authentication, however, attacks have also become much more sophisticated and many biometric techniques have ultimately proven inadequate in face of advanced attackers in practice. In this paper, we investigate the effectiveness of sensor-enhanced keystroke dynamics, a recent mobile biometric authentication mechanism that combines a particularly rich set of features. In our analysis, we consider different types of attacks, with a focus on advanced attacks that draw from general population statistics. Such attacks have already been proven effective in drastically reducing the accuracy of many state-of-the-art biometric authentication systems. We implemented a statistical attack against sensor-enhanced keystroke dynamics and evaluated its impact on detection accuracy. On one hand, our results show that sensor-enhanced keystroke dynamics are generally robust against statistical attacks with a marginal equal-error rate impact (textless0.14%). On the other hand, our results show that, surprisingly, keystroke timing features non-trivially weaken the security guarantees provided by sensor features alone. Our findings suggest that sensor dynamics may be a stronger biometric authentication mechanism against recently proposed practical attacks.

2018-05-15
Adel Dokhanchi, Bardh Hoxha, Cumhur Erkan Tuncali, Georgios Fainekos.  2016.  An efficient algorithm for monitoring practical TPTL specifications. 14th ACM-IEEE International Conference on Formal Methods and Models for System Design. :184-193.
2017-08-02
Mudgal, Richa, Gupta, Rohit.  2016.  An Efficient Approach for Wormhole Detection in MANET. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :29:1–29:6.

A MANET is a collection of self-configured node connected with wireless links. Each node of a mobile ad hoc network acts as a router and finds out a suitable route to forward a packet from source to destination. This network is applicable in areas where establishment of infrastructure is not possible, such as in the military environment. Along with the military environment MANET is also used in civilian environment such as sports stadiums, meeting room. The routing functionality of each node is cause of many security threats on routing. In this paper addressed the problem of identifying and isolating wormhole attack that refuse to forward packets in wireless mobile ad hoc network. The impact of this attack has been shown to be detrimental to network performance, lowering the packet delivery ratio and dramatically increasing the end-to-end delay. Proposed work suggested the efficient and secure routing in MANET. Using this approach of buffer length and RTT calculation, routing overhead minimizes. This research is based on detection and prevention of wormhole attacks in AODV. The proposed protocol is simulated using NS-2 and its performance is compared with the standard AODV protocol. The statistical analysis shows that modified AODV protocol detects wormhole attack efficiently and provides secure and optimum path for routing.

2017-08-18
Sun, Shi-Feng, Gu, Dawu, Liu, Joseph K., Parampalli, Udaya, Yuen, Tsz Hon.  2016.  Efficient Construction of Completely Non-Malleable CCA Secure Public Key Encryption. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :901–906.

Non-malleability is an important and intensively studied security notion for many cryptographic primitives. In the context of public key encryption, this notion means it is infeasible for an adversary to transform an encryption of some message m into one of a related message m' under the given public key. Although it has provided a strong security property for many applications, it still does not suffice for some scenarios like the system where the users could issue keys on-the-fly. In such settings, the adversary may have the power to transform the given public key and the ciphertext. To withstand such attacks, Fischlin introduced a stronger notion, known as complete non-malleability, which requires that the non-malleability property be preserved even for the adversaries attempting to produce a ciphertext of some related message under the transformed public key. To date, many schemes satisfying this stronger security have been proposed, but they are either inefficient or proved secure in the random oracle model. In this work, we put forward a new encryption scheme in the common reference string model. Based on the standard DBDH assumption, the proposed scheme is proved completely non-malleable secure against adaptive chosen ciphertext attacks in the standard model. In our scheme, the well-formed public keys and ciphertexts could be publicly recognized without drawing support from unwieldy techniques like non-interactive zero knowledge proofs or one-time signatures, thus achieving a better performance.

2017-03-07
West, Ruth, Kajihara, Meghan, Parola, Max, Hays, Kathryn, Hillard, Luke, Carlew, Anne, Deutsch, Jeremey, Lane, Brandon, Holloway, Michelle, John, Brendan et al..  2016.  Eliciting Tacit Expertise in 3D Volume Segmentation. Proceedings of the 9th International Symposium on Visual Information Communication and Interaction. :59–66.

The output of 3D volume segmentation is crucial to a wide range of endeavors. Producing accurate segmentations often proves to be both inefficient and challenging, in part due to lack of imaging data quality (contrast and resolution), and because of ambiguity in the data that can only be resolved with higher-level knowledge of the structure and the context wherein it resides. Automatic and semi-automatic approaches are improving, but in many cases still fail or require substantial manual clean-up or intervention. Expert manual segmentation and review is therefore still the gold standard for many applications. Unfortunately, existing tools (both custom-made and commercial) are often designed based on the underlying algorithm, not the best method for expressing higher-level intention. Our goal is to analyze manual (or semi-automatic) segmentation to gain a better understanding of both low-level (perceptual tasks and actions) and high-level decision making. This can be used to produce segmentation tools that are more accurate, efficient, and easier to use. Questioning or observation alone is insufficient to capture this information, so we utilize a hybrid capture protocol that blends observation, surveys, and eye tracking. We then developed, and validated, data coding schemes capable of discerning low-level actions and overall task structures.

2017-05-30
Unger, Nik, Thandra, Sahithi, Goldberg, Ian.  2016.  Elxa: Scalable Privacy-Preserving Plagiarism Detection. Proceedings of the 2016 ACM on Workshop on Privacy in the Electronic Society. :153–164.

One of the most challenging issues facing academic conferences and educational institutions today is plagiarism detection. Typically, these entities wish to ensure that the work products submitted to them have not been plagiarized from another source (e.g., authors submitting identical papers to multiple journals). Assembling large centralized databases of documents dramatically improves the effectiveness of plagiarism detection techniques, but introduces a number of privacy and legal issues: all document contents must be completely revealed to the database operator, making it an attractive target for abuse or attack. Moreover, this content aggregation involves the disclosure of potentially sensitive private content, and in some cases this disclosure may be prohibited by law. In this work, we introduce Elxa, the first scalable centralized plagiarism detection system that protects the privacy of the submissions. Elxa incorporates techniques from the current state of the art in plagiarism detection, as evaluated by the information retrieval community. Our system is designed to be operated on existing cloud computing infrastructure, and to provide incentives for the untrusted database operator to maintain the availability of the network. Elxa can be used to detect plagiarism in student work, duplicate paper submissions (and their associated peer reviews), similarities between confidential reports (e.g., malware summaries), or any approximate text reuse within a network of private documents. We implement a prototype using the Hadoop MapReduce framework, and demonstrate that it is feasible to achieve competitive detection effectiveness in the private setting.

2017-08-02
Dolz, Manuel F., del Rio Astorga, David, Fernández, Javier, García, J. Daniel, García-Carballeira, Félix, Danelutto, Marco, Torquati, Massimo.  2016.  Embedding Semantics of the Single-Producer/Single-Consumer Lock-Free Queue into a Race Detection Tool. Proceedings of the 7th International Workshop on Programming Models and Applications for Multicores and Manycores. :20–29.

The rapid progress of multi-/many-core architectures has caused data-intensive parallel applications not yet be fully suited for getting the maximum performance. The advent of parallel programming frameworks offering structured patterns has alleviated developers' burden adapting such applications to parallel platforms. For example, the use of synchronization mechanisms in multithreaded applications is essential on shared-cache multi-core architectures. However, ensuring an appropriate use of their interfaces can be challenging, since different memory models plus instruction reordering at compiler/processor levels may influence the occurrence of data races. The benefits of race detectors are formidable in this sense, nevertheless if lock-free data structures with no high-level atomics are used, they may emit false positives. In this paper, we extend the ThreadSanitizer race detection tool in order to support semantics of the general Single-Producer/Single-Consumer (SPSC) lock-free parallel queue and to detect benign data races where it was correctly used. To perform our analysis, we leverage the FastFlow SPSC bounded lock-free queue implementation to test our extensions over a set of μ-benchmarks and real applications on a dual-socket Intel Xeon CPU E5-2695 platform. We demonstrate that this approach can reduce, on average, 30% the number of data race warning messages.

Zangerle, Eva, Gassler, Wolfgang, Pichl, Martin, Steinhauser, Stefan, Specht, Günther.  2016.  An Empirical Evaluation of Property Recommender Systems for Wikidata and Collaborative Knowledge Bases. Proceedings of the 12th International Symposium on Open Collaboration. :18:1–18:8.

The Wikidata platform is a crowdsourced, structured knowledgebase aiming to provide integrated, free and language-agnostic facts which are–-amongst others–-used by Wikipedias. Users who actively enter, review and revise data on Wikidata are assisted by a property suggesting system which provides users with properties that might also be applicable to a given item. We argue that evaluating and subsequently improving this recommendation mechanism and hence, assisting users, can directly contribute to an even more integrated, consistent and extensive knowledge base serving a huge variety of applications. However, the quality and usefulness of such recommendations has not been evaluated yet. In this work, we provide the first evaluation of different approaches aiming to provide users with property recommendations in the process of curating information on Wikidata. We compare the approach currently facilitated on Wikidata with two state-of-the-art recommendation approaches stemming from the field of RDF recommender systems and collaborative information systems. Further, we also evaluate hybrid recommender systems combining these approaches. Our evaluations show that the current recommendation algorithm works well in regards to recall and precision, reaching a recall@7 of 79.71% and a precision@7 of 27.97%. We also find that generally, incorporating contextual as well as classifying information into the computation of property recommendations can further improve its performance significantly.

2017-05-22
Hessar, Mehrdad, Iyer, Vikram, Gollakota, Shyamnath.  2016.  Enabling On-body Transmissions with Commodity Devices. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. :1100–1111.

We show for the first time that commodity devices can be used to generate wireless data transmissions that are confined to the human body. Specifically, we show that commodity input devices such as fingerprint sensors and touchpads can be used to transmit information to only wireless receivers that are in contact with the body. We characterize the propagation of the resulting transmissions across the whole body and run experiments with ten subjects to demonstrate that our approach generalizes across different body types and postures. We also evaluate our communication system in the presence of interference from other wearable devices such as smartwatches and nearby metallic surfaces. Finally, by modulating the operations of these input devices, we demonstrate bit rates of up to 50 bits per second over the human body.

2017-10-13
Costanzo, David, Shao, Zhong, Gu, Ronghui.  2016.  End-to-end Verification of Information-flow Security for C and Assembly Programs. Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation. :648–664.

Protecting the confidentiality of information manipulated by a computing system is one of the most important challenges facing today's cybersecurity community. A promising step toward conquering this challenge is to formally verify that the end-to-end behavior of the computing system really satisfies various information-flow policies. Unfortunately, because today's system software still consists of both C and assembly programs, the end-to-end verification necessarily requires that we not only prove the security properties of individual components, but also carefully preserve these properties through compilation and cross-language linking. In this paper, we present a novel methodology for formally verifying end-to-end security of a software system that consists of both C and assembly programs. We introduce a general definition of observation function that unifies the concepts of policy specification, state indistinguishability, and whole-execution behaviors. We show how to use different observation functions for different levels of abstraction, and how to link different security proofs across abstraction levels using a special kind of simulation that is guaranteed to preserve state indistinguishability. To demonstrate the effectiveness of our new methodology, we have successfully constructed an end-to-end security proof, fully formalized in the Coq proof assistant, of a nontrivial operating system kernel (running on an extended CompCert x86 assembly machine model). Some parts of the kernel are written in C and some are written in assembly; we verify all of the code, regardless of language.

2018-05-15
2017-05-22
Anderson, Brian, Bergstrom, Lars, Goregaokar, Manish, Matthews, Josh, McAllister, Keegan, Moffitt, Jack, Sapin, Simon.  2016.  Engineering the Servo Web Browser Engine Using Rust. Proceedings of the 38th International Conference on Software Engineering Companion. :81–89.

All modern web browsers –- Internet Explorer, Firefox, Chrome, Opera, and Safari –- have a core rendering engine written in C++. This language choice was made because it affords the systems programmer complete control of the underlying hardware features and memory in use, and it provides a transparent compilation model. Unfortunately, this language is complex (especially to new contributors!), challenging to write correct parallel code in, and highly susceptible to memory safety issues that potentially lead to security holes. Servo is a project started at Mozilla Research to build a new web browser engine that preserves the capabilities of these other browser engines but also both takes advantage of the recent trends in parallel hardware and is more memory-safe. We use a new language, Rust, that provides us a similar level of control of the underlying system to C++ but which statically prevents many memory safety issues and provides direct support for parallelism and concurrency. In this paper, we show how a language with an advanced type system can address many of the most common security issues and software engineering challenges in other browser engines, while still producing code that has the same performance and memory profile. This language is also quite accessible to new open source contributors and employees, even those without a background in C++ or systems programming. We also outline several pitfalls encountered along the way and describe some potential areas for future improvement.

2017-09-19
Huo, Jing, Gao, Yang, Shi, Yinghuan, Yang, Wanqi, Yin, Hujun.  2016.  Ensemble of Sparse Cross-Modal Metrics for Heterogeneous Face Recognition. Proceedings of the 2016 ACM on Multimedia Conference. :1405–1414.

Heterogeneous face recognition aims to identify or verify person identity by matching facial images of different modalities. In practice, it is known that its performance is highly influenced by modality inconsistency, appearance occlusions, illumination variations and expressions. In this paper, a new method named as ensemble of sparse cross-modal metrics is proposed for tackling these challenging issues. In particular, a weak sparse cross-modal metric learning method is firstly developed to measure distances between samples of two modalities. It learns to adjust rank-one cross-modal metrics to satisfy two sets of triplet based cross-modal distance constraints in a compact form. Meanwhile, a group based feature selection is performed to enforce that features in the same position of two modalities are selected simultaneously. By neglecting features that attribute to "noise" in the face regions (eye glasses, expressions and so on), the performance of learned weak metrics can be markedly improved. Finally, an ensemble framework is incorporated to combine the results of differently learned sparse metrics into a strong one. Extensive experiments on various face datasets demonstrate the benefit of such feature selection especially when heavy occlusions exist. The proposed ensemble metric learning has been shown superiority over several state-of-the-art methods in heterogeneous face recognition.

2017-03-17
Carver, Jeffrey C., Burcham, Morgan, Kocak, Sedef Akinli, Bener, Ayse, Felderer, Michael, Gander, Matthias, King, Jason, Markkula, Jouni, Oivo, Markku, Sauerwein, Clemens et al..  2016.  Establishing a Baseline for Measuring Advancement in the Science of Security: An Analysis of the 2015 IEEE Security & Privacy Proceedings. Proceedings of the Symposium and Bootcamp on the Science of Security. :38–51.

To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.