Biblio

Filters: Author is Sauerwein, Clemens  [Clear All Filters]
2017-03-17
Carver, Jeffrey C., Burcham, Morgan, Kocak, Sedef Akinli, Bener, Ayse, Felderer, Michael, Gander, Matthias, King, Jason, Markkula, Jouni, Oivo, Markku, Sauerwein, Clemens et al..  2016.  Establishing a Baseline for Measuring Advancement in the Science of Security: An Analysis of the 2015 IEEE Security & Privacy Proceedings. Proceedings of the Symposium and Bootcamp on the Science of Security. :38–51.

To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.

2017-03-20
Carver, Jeffrey C., Burcham, Morgan, Kocak, Sedef Akinli, Bener, Ayse, Felderer, Michael, Gander, Matthias, King, Jason, Markkula, Jouni, Oivo, Markku, Sauerwein, Clemens et al..  2016.  Establishing a Baseline for Measuring Advancement in the Science of Security: An Analysis of the 2015 IEEE Security & Privacy Proceedings. Proceedings of the Symposium and Bootcamp on the Science of Security. :38–51.

To help establish a more scientific basis for security science, which will enable the development of fundamental theories and move the field from being primarily reactive to primarily proactive, it is important for research results to be reported in a scientifically rigorous manner. Such reporting will allow for the standard pillars of science, namely replication, meta-analysis, and theory building. In this paper we aim to establish a baseline of the state of scientific work in security through the analysis of indicators of scientific research as reported in the papers from the 2015 IEEE Symposium on Security and Privacy. To conduct this analysis, we developed a series of rubrics to determine the completeness of the papers relative to the type of evaluation used (e.g. case study, experiment, proof). Our findings showed that while papers are generally easy to read, they often do not explicitly document some key information like the research objectives, the process for choosing the cases to include in the studies, and the threats to validity. We hope that this initial analysis will serve as a baseline against which we can measure the advancement of the science of security.

2017-09-15
Sillaber, Christian, Sauerwein, Clemens, Mussmann, Andrea, Breu, Ruth.  2016.  Data Quality Challenges and Future Research Directions in Threat Intelligence Sharing Practice. Proceedings of the 2016 ACM on Workshop on Information Sharing and Collaborative Security. :65–70.

In the last couple of years, organizations have demonstrated an increased willingness to participate in threat intelligence sharing platforms. The open exchange of information and knowledge regarding threats, vulnerabilities, incidents and mitigation strategies results from the organizations' growing need to protect against today's sophisticated cyber attacks. To investigate data quality challenges that might arise in threat intelligence sharing, we conducted focus group discussions with ten expert stakeholders from security operations centers of various globally operating organizations. The study addresses several factors affecting shared threat intelligence data quality at multiple levels, including collecting, processing, sharing and storing data. As expected, the study finds that the main factors that affect shared threat intelligence data stem from the limitations and complexities associated with integrating and consolidating shared threat intelligence from different sources while ensuring the data's usefulness for an inhomogeneous group of participants.Data quality is extremely important for shared threat intelligence. As our study has shown, there are no fundamentally new data quality issues in threat intelligence sharing. However, as threat intelligence sharing is an emerging domain and a large number of threat intelligence sharing tools are currently being rushed to market, several data quality issues – particularly related to scalability and data source integration – deserve particular attention.