Biblio

Found 685 results

Filters: First Letter Of Last Name is I  [Clear All Filters]
2020-02-26
Sokolov, S. A., Iliev, T. B., Stoyanov, I. S..  2019.  Analysis of Cybersecurity Threats in Cloud Applications Using Deep Learning Techniques. 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :441–446.

In this paper we present techniques based on machine learning techniques on monitoring data for analysis of cybersecurity threats in cloud environments that incorporate enterprise applications from the fields of telecommunications and IoT. Cybersecurity is a term describing techniques for protecting computers, telecommunications equipment, applications, environments and data. In modern networks enormous volume of generated traffic can be observed. We propose several techniques such as Support Vector Machines, Neural networks and Deep Neural Networks in combination for analysis of monitoring data. An approach for combining classifier results based on performance weights is proposed. The proposed approach delivers promising results comparable to existing algorithms and is suitable for enterprise grade security applications.

2020-04-06
Ito, Keita, Masuda, Yoshihiro, Okamoto, Eiji.  2019.  A Chaos MIMO-Based Polar Concatenation Code for Secure Channel Coding. 2019 International Conference on Information Networking (ICOIN). :262—267.

For secure and high-quality wireless transmission, we propose a chaos multiple-input multiple-output (C-MIMO) transmission scheme, in which physical layer security and a channel coding effect with a coding rate of 1 are obtained by chaotic MIMO block modulation. In previous studies, we introduced a log-likelihood ratio (LLR) to C-MIMO to exploit LLR-based outer channel coding and turbo decoding, and obtained further coding gain. However, we only studied the concatenation of turbo code, low-density parity check (LDPC) code, and convolutional code which were relatively high-complexity or weak codes; thus, outer code having further low-complexity and strong error correction ability were expected. In particular, a transmission system with short and good code is required for control signaling, such as in 5G networks. Therefore, in this paper, we propose a polar code concatenation to C-MIMO, and introduce soft successive decoding (SCAD) and soft successive cancellation list decoding (SSCLD) as LLR-based turbo decoding for polar code. We numerically evaluate the bit error rate performance of the proposed scheme, and compare it to the conventional LDPC-concatenated transmission.

2020-06-26
Betha, Durga Janardhana Anudeep, Bhanuj, Tatineni Sai, Umamaheshwari, B, Iyer, R. Abirami, Devi, R. Santhiya, Amirtharajan, Rengarajan, Praveenkumar, Padmapriya.  2019.  Chaotic based Image Encryption - A Neutral Perspective. 2019 International Conference on Computer Communication and Informatics (ICCCI). :1—5.

Today, there are several applications which allow us to share images over the internet. All these images must be stored in a secure manner and should be accessible only to the intended recipients. Hence it is of utmost importance to develop efficient and fast algorithms for encryption of images. This paper uses chaotic generators to generate random sequences which can be used as keys for image encryption. These sequences are seemingly random and have statistical properties. This makes them resistant to analysis and correlation attacks. However, these sequences have fixed cycle lengths. This restricts the number of sequences that can be used as keys. This paper utilises neural networks as a source of perturbation in a chaotic generator and uses its output to encrypt an image. The robustness of the encryption algorithm can be verified using NPCR, UACI, correlation coefficient analysis and information entropy analysis.

2020-03-02
Ajayi, Oluwaseyi, Igbe, Obinna, Saadawi, Tarek.  2019.  Consortium Blockchain-Based Architecture for Cyber-Attack Signatures and Features Distribution. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :0541–0549.

One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain's distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency.

2020-02-26
Itakura, Keisuke, Mori, Yojiro, Hasegawa, Hiroshi, Sato, Ken-ichi.  2019.  Design of and Resiliency Enhancement in Coarse/Fine Hybrid Granular Routing Optical Networks Based on Iterative Path-Pair-Loop Inflation. 2019 15th International Conference on the Design of Reliable Communication Networks (DRCN). :11–15.

A spectral-resource-utilization-efficient and highly resilient coarse granular routing optical network architecture is proposed. The improvement in network resiliency is realized by a novel concept named loop inflation that aims to enhance the geographical diversity of a working path and its redundant path. The trade-off between the inflation and the growth in circumference length of loops is controlled by the Simulated Annealing technique. Coarse granular routing is combined with resilient path design to realize higher spectral resource utilization. The routing scheme defines virtual direct links (VDLs) bridging distant nodes to alleviate the spectrum narrowing effect at the nodes traversed, allowing optical channels to be more densely accommodated by the fibers installed. Numerical experiments elucidate that the proposed networks successfully achieve a 30+0/0 route diversity improvement and a 12% fiber number reduction over conventional networks.

2020-04-17
Liew, Seng Pei, Ikeda, Satoshi.  2019.  Detecting Adversary using Windows Digital Artifacts. 2019 IEEE International Conference on Big Data (Big Data). :3210—3215.

We consider the possibility of detecting malicious behaviors of the advanced persistent threat (APT) at endpoints during incident response or forensics investigations. Specifically, we study the case where third-party sensors are not available; our observables are obtained solely from inherent digital artifacts of Windows operating systems. What is of particular interest is an artifact called the Application Compatibility Cache (Shimcache). As it is not apparent from the Shimcache when a file has been executed, we propose an algorithm of estimating the time of file execution up to an interval. We also show guarantees of the proposed algorithm's performance and various possible extensions that can improve the estimation. Finally, combining this approach with methods of machine learning, as well as information from other digital artifacts, we design a prototype system called XTEC and demonstrate that it can help hunt for the APT in a real-world case study.

2020-08-24
Yeboah-Ofori, Abel, Islam, Shareeful, Brimicombe, Allan.  2019.  Detecting Cyber Supply Chain Attacks on Cyber Physical Systems Using Bayesian Belief Network. 2019 International Conference on Cyber Security and Internet of Things (ICSIoT). :37–42.

Identifying cyberattack vectors on cyber supply chains (CSC) in the event of cyberattacks are very important in mitigating cybercrimes effectively on Cyber Physical Systems CPS. However, in the cyber security domain, the invincibility nature of cybercrimes makes it difficult and challenging to predict the threat probability and impact of cyber attacks. Although cybercrime phenomenon, risks, and treats contain a lot of unpredictability's, uncertainties and fuzziness, cyberattack detection should be practical, methodical and reasonable to be implemented. We explore Bayesian Belief Networks (BBN) as knowledge representation in artificial intelligence to be able to be formally applied probabilistic inference in the cyber security domain. The aim of this paper is to use Bayesian Belief Networks to detect cyberattacks on CSC in the CPS domain. We model cyberattacks using DAG method to determine the attack propagation. Further, we use a smart grid case study to demonstrate the applicability of attack and the cascading effects. The results show that BBN could be adapted to determine uncertainties in the event of cyberattacks in the CSC domain.

2020-04-17
Islam, Md. Jahidul, Mahin, Md., Roy, Shanto, Debnath, Biplab Chandra, Khatun, Ayesha.  2019.  DistBlackNet: A Distributed Secure Black SDN-IoT Architecture with NFV Implementation for Smart Cities. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). :1—6.

Internet of Things (IoT) is a key emerging technology which aims to connect objects over the internet. Software Defined Networking (SDN) is another new intelligent technology within networking domain which increases the network performance and provides better security, reliability, and privacy using dynamic software programs. In this paper, we have proposed a distributed secure Black SDN-IoT architecture with NFV implementation for smart cities. We have incorporated Black SDN that is highly secured SDN which gives better result in network performances, security, and privacy and secures both metadata and payload within each layer. This architecture also tried to introduce an approach which is more effective for building a cluster by means of Black SDN. Black SDN-loT with NFV concept brings benefits to the related fields in terms of energy savings and load balancing. Moreover, Multiple distributed controller have proposed to improve availability, integrity, privacy, confidentiality and etc. In the proposed architecture, the Black network provides higher security of each network layer comparative to the conventional network. Finally, this paper has discussed the architectural design of distributed secure Black SDN-IoT with NFV for smart cities and research challenges.

2020-02-18
Talluri, Sacheendra, Iosup, Alexandru.  2019.  Efficient Estimation of Read Density When Caching for Big Data Processing. IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :502–507.

Big data processing systems are becoming increasingly more present in cloud workloads. Consequently, they are starting to incorporate more sophisticated mechanisms from traditional database and distributed systems. We focus in this work on the use of caching policies, which for big data raise important new challenges. Not only they must respond to new variants of the trade-off between hit rate, response time, and the space consumed by the cache, but they must do so at possibly higher volume and velocity than web and database workloads. Previous caching policies have not been tested experimentally with big data workloads. We address these challenges in this work. We propose the Read Density family of policies, which is a principled approach to quantify the utility of cached objects through a family of utility functions that depend on the frequency of reads of an object. We further design the Approximate Histogram, which is a policy-based technique based on an array of counters. This technique promises to achieve runtime-space efficient computation of the metric required by the cache policy. We evaluate through trace-based simulation the caching policies from the Read Density family, and compare them with over ten state-of-the-art alternatives. We use two workload traces representative for big data processing, collected from commercial Spark and MapReduce deployments. While we achieve comparable performance to the state-of-art with less parameters, meaningful performance improvement for big data workloads remain elusive.

2020-10-12
Jharko, Elena, Promyslov, Vitaly, Iskhakov, Andrey.  2019.  Extending Functionality of Early Fault Diagnostic System for Online Security Assessment of Nuclear Power Plant. 2019 International Russian Automation Conference (RusAutoCon). :1–6.

The new instrumentation and control (I&C) systems of the nuclear power plants (NPPs) improve the ability to operate the plant enhance the safety and performance of the NPP. However, they bring a new type of threat to the NPP's industry-cyber threat. The early fault diagnostic system (EDS) is one of the decision support systems that might be used online during the operation stage. The EDS aim is to prevent the incident/accident evolution by a timely troubleshooting process during any plant operational modes. It means that any significative deviation of plant parameters from normal values is pointed-out to plant operators well before reaching any undesired threshold potentially leading to a prohibited plant state, together with the cause that has generated the deviation. The paper lists the key benefits using the EDS to counter the cyber threat and proposes the framework for cybersecurity assessment using EDS during the operational stage.

2020-01-20
Ishaque, Mohammed, Hudec, Ladislav.  2019.  Feature extraction using Deep Learning for Intrusion Detection System. 2019 2nd International Conference on Computer Applications Information Security (ICCAIS). :1–5.

Deep Learning is an area of Machine Learning research, which can be used to manipulate large amount of information in an intelligent way by using the functionality of computational intelligence. A deep learning system is a fully trainable system beginning from raw input to the final output of recognized objects. Feature selection is an important aspect of deep learning which can be applied for dimensionality reduction or attribute reduction and making the information more explicit and usable. Deep learning can build various learning models which can abstract unknown information by selecting a subset of relevant features. This property of deep learning makes it useful in analysis of highly complex information one which is present in intrusive data or information flowing with in a web system or a network which needs to be analyzed to detect anomalies. Our approach combines the intelligent ability of Deep Learning to build a smart Intrusion detection system.

2020-02-10
Ishtiaq, Asra, Islam, Muhammad Arshad, Azhar Iqbal, Muhammad, Aleem, Muhammad, Ahmed, Usman.  2019.  Graph Centrality Based Spam SMS Detection. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :629–633.

Short messages usage has been tremendously increased such as SMS, tweets and status updates. Due to its popularity and ease of use, many companies use it for advertisement purpose. Hackers also use SMS to defraud users and steal personal information. In this paper, the use of Graphs centrality metrics is proposed for spam SMS detection. The graph centrality measures: degree, closeness, and eccentricity are used for classification of SMS. Graphs for each class are created using labeled SMS and then unlabeled SMS is classified using the centrality scores of the token available in the unclassified SMS. Our results show that highest precision and recall is achieved by using degree centrality. Degree centrality achieved the highest precision i.e. 0.81 and recall i.e., 0.76 for spam messages.

2020-01-21
Iriqat, Yousef Mohammad, Ahlan, Abd Rahman, Molok, Nurul Nuha Abdul.  2019.  Information Security Policy Perceived Compliance Among Staff in Palestine Universities: An Empirical Pilot Study. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :580–585.

In today's interconnected world, universities recognize the importance of protecting their information assets from internal and external threats. Being the possible insider threats to Information Security, employees are often coined as the weakest link. Both employees and organizations should be aware of this raising challenge. Understanding staff perception of compliance behaviour is critical for universities wanting to leverage their staff capabilities to mitigate Information Security risks. Therefore, this research seeks to get insights into staff perception based on factors adopted from several theories by using proposed constructs i.e. "perceived" practices/policies and "perceived" intention to comply. Drawing from the General Deterrence Theory, Protection Motivation Theory, Theory of Planned Behaviour and Information Reinforcement, within the context of Palestine universities, this paper integrates staff awareness of Information Security Policies (ISP) countermeasures as antecedents to ``perceived'' influencing factors (perceived sanctions, perceived rewards, perceived coping appraisal, and perceived information reinforcement). The empirical study is designed to follow a quantitative research approaches, use survey as a data collection method and questionnaires as the research instruments. Partial least squares structural equation modelling is used to inspect the reliability and validity of the measurement model and hypotheses testing for the structural model. The research covers ISP awareness among staff and seeks to assert that information security is the responsibility of all academic and administrative staff from all departments. Overall, our pilot study findings seem promising, and we found strong support for our theoretical model.

2019-05-20
Dey, H., Islam, R., Arif, H..  2019.  An Integrated Model To Make Cloud Authentication And Multi-Tenancy More Secure. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :502–506.

Cloud Computing is an important term of modern technology. The usefulness of Cloud is increasing day by day and simultaneously more and more security problems are arising as well. Two of the major threats of Cloud are improper authentication and multi-tenancy. According to the specialists both pros and cons belong to multi-tenancy. There are security protocols available but it is difficult to claim these protocols are perfect and ensure complete protection. The purpose of this paper is to propose an integrated model to ensure better Cloud security for Authentication and multi-tenancy. Multi-tenancy means sharing of resources and virtualization among clients. Since multi-tenancy allows multiple users to access same resources simultaneously, there is high probability of accessing confidential data without proper privileges. Our model includes Kerberos authentication protocol to enhance authentication security. During our research on Kerberos we have found some flaws in terms of encryption method which have been mentioned in couple of IEEE conference papers. Pondering about this complication we have elected Elliptic Curve Cryptography. On the other hand, to attenuate arose risks due to multi-tenancy we are proposing a Resource Allocation Manager Unit, a Control Database and Resource Allocation Map. This part of the model will perpetuate resource allocation for the users.

2020-04-10
Ikhsan, Mukhammad Gufron, Ramli, Kalamullah.  2019.  Measuring the Information Security Awareness Level of Government Employees Through Phishing Assessment. 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :1—4.

As an important institutional element, government information security is not only related to technical issues but also to human resources. Various types of information security instruments in an institution cannot provide maximum protection as long as employees still have a low level of information security awareness. This study aims to measure the level of information security awareness of government employees through case studies at the Directorate General of ABC (DG ABC) in Indonesia. This study used two methods, behavior approach through phishing simulation and knowledge approach through a questionnaire on a Likert scale. The simulation results were analyzed on a percentage scale and compared to the results of the questionnaire to determine the level of employees' information security awareness and determine which method was the best. Results show a significant relationship between the simulation results and the questionnaire results. Among the employees who opened the email, 69% clicked on the link that led to the camouflage page and through the questionnaire, it was found that the information security awareness level of DG ABC employees was at the level of 79.32% which was the lower limit of the GOOD category.

2020-10-12
Ifedayo, Oladeji R., Zamora, Ramon, Lie T., Tek.  2019.  Modelling an Adaptable Multi-Objective Fuzzy Expert System Based Transmission Network Transfer Capacity Enhancement. 2019 Australian New Zealand Control Conference (ANZCC). :237–242.

The need to enhance the performance of existing transmission network in line with economic and technical constraints is crucial in a competitive market environment. This paper models the total transfer capacity (TTC) improvement using optimally placed thyristor-controlled series capacitors (TCSC). The system states were evaluated using distributed slack bus (DSB) and continuous power flow (CPF) techniques. Adaptable logic relations was modelled based on security margin (SM), steady state and transient condition collapse voltages (Uss, Uts) and the steady state line power loss (Plss), through which line suitability index (LSI) were obtained. The fuzzy expert system (FES) membership functions (MF) with respective degrees of memberships are defined to obtain the best states. The LSI MF is defined high between 0.2-0.8 to provide enough protection under transient disturbances. The test results on IEEE 30 bus system show that the model is feasible for TTC enhancement under steady state and N-1 conditions.

2020-06-03
Ellison, Dagney, Ikuesan, Richard Adeyemi, Venter, Hein S..  2019.  Ontology for Reactive Techniques in Digital Forensics. 2019 IEEE Conference on Application, Information and Network Security (AINS). :83—88.

Techniques applied in response to detrimental digital incidents vary in many respects according to their attributes. Models of techniques exist in current research but are typically restricted to some subset with regards to the discipline of the incident. An enormous collection of techniques is actually available for use. There is no single model representing all these techniques. There is no current categorisation of digital forensics reactive techniques that classify techniques according to the attribute of function and nor is there an attempt to classify techniques in a means that goes beyond a subset. In this paper, an ontology that depicts digital forensic reactive techniques classified by function is presented. The ontology itself contains additional information for each technique useful for merging into a cognate system where the relationship between techniques and other facets of the digital investigative process can be defined. A number of existing techniques were collected and described according to their function - a verb. The function then guided the placement and classification of the techniques in the ontology according to the ontology development process. The ontology contributes to a knowledge base for digital forensics - essentially useful as a resource for the various people operating in the field of digital forensics. The benefit of this that the information can be queried, assumptions can be made explicit, and there is a one-stop-shop for digital forensics reactive techniques with their place in the investigation detailed.

2020-08-24
Islam, Chadni, Babar, Muhammad Ali, Nepal, Surya.  2019.  An Ontology-Driven Approach to Automating the Process of Integrating Security Software Systems. 2019 IEEE/ACM International Conference on Software and System Processes (ICSSP). :54–63.

A wide variety of security software systems need to be integrated into a Security Orchestration Platform (SecOrP) to streamline the processes of defending against and responding to cybersecurity attacks. Lack of interpretability and interoperability among security systems are considered the key challenges to fully leverage the potential of the collective capabilities of different security systems. The processes of integrating security systems are repetitive, time-consuming and error-prone; these processes are carried out manually by human experts or using ad-hoc methods. To help automate security systems integration processes, we propose an Ontology-driven approach for Security OrchestrAtion Platform (OnSOAP). The developed solution enables interpretability, and interoperability among security systems, which may exist in operational silos. We demonstrate OnSOAP's support for automated integration of security systems to execute the incident response process with three security systems (Splunk, Limacharlie, and Snort) for a Distributed Denial of Service (DDoS) attack. The evaluation results show that OnSOAP enables SecOrP to interpret the input and output of different security systems, produce error-free integration details, and make security systems interoperable with each other to automate and accelerate an incident response process.

2020-08-03
Islam, Noman.  2019.  A Secure Service Discovery Scheme for Mobile ad hoc Network using Artificial Deep Neural Network. 2019 International Conference on Frontiers of Information Technology (FIT). :133–1335.

In this paper, an agent-based cross-layer secure service discovery scheme has been presented. Service discovery in MANET is a critical task and it presents numerous security challenges. These threats can compromise the availability, privacy and integrity of service discovery process and infrastructure. This paper highlights various security challenges prevalent to service discovery in MANET. Then, in order to address these security challenges, the paper proposes a cross-layer, agent based secure service discovery scheme for MANET based on deep neural network. The software agents will monitor the intrusive activities in the network based on an Intrusion Detection System (IDS). The service discovery operation is performed based on periodic dissemination of service, routing and security information. The QoS provisioning is achieved by encapsulating QoS information in the periodic advertisements done by service providers. The proposed approach has been implemented in JIST/ SWANS simulator. The results show that proposed approach provides improved security, scalability, latency, packet delivery ratio and service discovery success ratio, for various simulation scenarios.

2019-06-24
Ijaz, M., Durad, M. H., Ismail, M..  2019.  Static and Dynamic Malware Analysis Using Machine Learning. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :687–691.

Malware detection is an indispensable factor in security of internet oriented machines. The combinations of different features are used for dynamic malware analysis. The different combinations are generated from APIs, Summary Information, DLLs and Registry Keys Changed. Cuckoo sandbox is used for dynamic malware analysis, which is customizable, and provide good accuracy. More than 2300 features are extracted from dynamic analysis of malware and 92 features are extracted statically from binary malware using PEFILE. Static features are extracted from 39000 malicious binaries and 10000 benign files. Dynamically 800 benign files and 2200 malware files are analyzed in Cuckoo Sandbox and 2300 features are extracted. The accuracy of dynamic malware analysis is 94.64% while static analysis accuracy is 99.36%. The dynamic malware analysis is not effective due to tricky and intelligent behaviours of malwares. The dynamic analysis has some limitations due to controlled network behavior and it cannot be analyzed completely due to limited access of network.

2019-12-16
McDermott, Christopher D., Jeannelle, Bastien, Isaacs, John P..  2019.  Towards a Conversational Agent for Threat Detection in the Internet of Things. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

A conversational agent to detect anomalous traffic in consumer IoT networks is presented. The agent accepts two inputs in the form of user speech received by Amazon Alexa enabled devices, and classified IDS logs stored in a DynamoDB Table. Aural analysis is used to query the database of network traffic, and respond accordingly. In doing so, this paper presents a solution to the problem of making consumers situationally aware when their IoT devices are infected, and anomalous traffic has been detected. The proposed conversational agent addresses the issue of how to present network information to non-technical users, for better comprehension, and improves awareness of threats derived from the mirai botnet malware.

2019-08-21
Shenghua Feng, Mingshuai Chen, Naijun Zhan, Martin Fränzle, Bai Xue.  2019.  Taming Delays in Dynamical Systems: Unbounded Verification of Delay Differential Equations. 31st International Conference on Computer Aided Verification. 11561:650-669.

Delayed coupling between state variables occurs regularly in technical dynamic systems, especially embedded control. As it consequently is omnipresent in safety-critical domains, there is an increasing interest in the safety verifications of systems modeled by Delay Differential Equations (DDEs). In this paper, we leverage qualitative guarantees for the existence of an exponentially decreasing estimation on the solutions to DDEs as established in classical stability theory, and present a quantitative method for constructing such delay-dependent estimations, thereby facilitating a reduction of the verification problem over an unbounded temporal horizon to a bounded one. Our technique builds on the linearization technique of non-linear dynamics and spectral analysis of the linearized counterparts. We show experimentally on a set of representative benchmarks from the literature that our technique indeed extends the scope of bounded verification techniques to unbounded verification tasks. Moreover our technique is easy to implement and can be combined with any automatic tool dedicated to bounded verification of DDEs.

2020-10-01
2019-09-10
Ian Bogost.  2019.  Facebook’s Dystopian Definition of ‘Fake’. The Atlantic.

Facebook's response to a altered video of Nancy Pelosi has sparked a debate as to whether social media platforms should take down videos that are considered to be "fake". The definition of "fake" is also discussed.

2020-01-13
van Kerkhoven, Jason, Charlebois, Nathaniel, Robertson, Alex, Gibson, Brydon, Ahmed, Arslan, Bouida, Zied, Ibnkahla, Mohamed.  2019.  IPv6-Based Smart Grid Communication over 6LoWPAN. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Smart Grid is a major element of the Smart City concept that enables two-way communication of energy data between electric utilities and their consumers. These communication technologies are going through sharp modernization to meet future demand growth and to achieve reliability, security, and efficiency of the electric grid. In this paper, we implement an IPv6 based two-way communication system between the transformer agent (TA), installed at local electric transformer and various customer agents (CAs), connected to customer's smart meter. Various homes share their energy usage with the TA which in turn sends the utility's recommendations to the CAs. Raspberry Pi is used as hardware for all the CAs and the TA. We implement a self-healing mesh network between all nodes using OpenLab IEEE 802.15.4 chips and Routing Protocol for Low-Power and Lossy Networks (RPL), and the data is secured by RSA/AES keys. Several tests have been conducted in real environments, inside and outside of Carleton University, to test the performance of this communication network in various obstacle settings. In this paper, we highlight the details behind the implementation of this IPv6-based smart grid communication system, the related challenges, and the proposed solutions.