Biblio
Cyber SA is described as the current and predictive knowledge of cyberspace in relation to the Network, Missions and Threats across friendly, neutral and adversary forces. While this model provides a good high-level understanding of Cyber SA, it does not contain actionable information to help inform the development of capabilities to improve SA. In this paper, we present a systematic, human-centered process that uses a card sort methodology to understand and conceptualize Senior Leader Cyber SA requirements. From the data collected, we were able to build a hierarchy of high- and low- priority Cyber SA information, as well as uncover items that represent high levels of disagreement with and across organizations. The findings of this study serve as a first step in developing a better understanding of what Cyber SA means to Senior Leaders, and can inform the development of future capabilities to improve their SA and Mission Performance.
Protocols do not work alone, but together, one protocol relying on another to provide needed services. Many of the problems in cryptographic protocols arise when such composition is done incorrectly or is not well understood. In this paper we discuss an extension to the Maude-NPA syntax and operational semantics to support dynamic sequential composition of protocols, so that protocols can be specified sepa- rately and composed when desired. This allows one to reason about many different compositions with minimal changes to the specification. Moreover, we show that, by a simple protocol transformation, we are able to analyze and verify this dynamic composition in the current Maude-NPA tool. We prove soundness and completeness of the protocol transforma- tion with respect to the extended operational semantics, and illustrate our results on some examples.
Captchas are designed to be easy for humans but hard for machines. However, most recent research has focused only on making them hard for machines. In this paper, we present what is to the best of our knowledge the first large scale evaluation of captchas from the human perspective, with the goal of assessing how much friction captchas present to the average user. For the purpose of this study we have asked workers from Amazon’s Mechanical Turk and an underground captchabreaking service to solve more than 318 000 captchas issued from the 21 most popular captcha schemes (13 images schemes and 8 audio scheme). Analysis of the resulting data reveals that captchas are often difficult for humans, with audio captchas being particularly problematic. We also find some demographic trends indicating, for example, that non-native speakers of English are slower in general and less accurate on English-centric captcha schemes. Evidence from a week’s worth of eBay captchas (14,000,000 samples) suggests that the solving accuracies found in our study are close to real-world values, and that improving audio captchas should become a priority, as nearly 1% of all captchas are delivered as audio rather than images. Finally our study also reveals that it is more effective for an attacker to use Mechanical Turk to solve captchas than an underground service.
We propose 10 challenges for making automation components into effective "team players" when they interact with people in significant ways. Our analysis is based on some of the principles of human-centered computing that we have developed individually and jointly over the years, and is adapted from a more comprehensive examination of common ground and coordination.