Biblio

Found 1602 results

Filters: First Letter Of Last Name is N  [Clear All Filters]
2018-05-17
2018-05-14
2018-05-17
2023-07-28
Dubchak, Lesia, Vasylkiv, Nadiia, Turchenko, Iryna, Komar, Myroslav, Nadvynychna, Tetiana, Volner, Rudolf.  2022.  Access Distribution to the Evaluation System Based on Fuzzy Logic. 2022 12th International Conference on Advanced Computer Information Technologies (ACIT). :564—567.
In order to control users’ access to the information system, it is necessary to develop a security system that can work in real time and easily reconfigure. This problem can be solved using a fuzzy logic. In this paper the authors propose a fuzzy distribution system for access to the student assessment system, which takes into account the level of user access, identifier and the risk of attack during the request. This approach allows process fuzzy or incomplete information about the user and implement a sufficient level of confidential information protection.
2023-01-13
Syed, Shameel, Khuhawar, Faheem, Talpur, Shahnawaz, Memon, Aftab Ahmed, Luque-Nieto, Miquel-Angel, Narejo, Sanam.  2022.  Analysis of Dynamic Host Control Protocol Implementation to Assess DoS Attacks. 2022 Global Conference on Wireless and Optical Technologies (GCWOT). :1—7.
Dynamic Host Control Protocol (DHCP) is a protocol which provides IP addresses and network configuration parameters to the hosts present in the network. This protocol is deployed in small, medium, and large size organizations which removes the burden from network administrator to manually assign network parameters to every host in the network for establishing communication. Every vendor who plans to incorporate DHCP service in its device follows the working flow defined in Request for Comments (RFC). DHCP Starvation and DHCP Flooding attack are Denial of Service (DoS) attacks to prevents provision of IP addresses by DHCP. Port Security and DHCP snooping are built-in security features which prevents these DoS attacks. However, novel techniques have been devised to bypass these security features which uses ARP and ICMP protocol to perform the attack. The purpose of this research is to analyze implementation of DHCP in multiple devices to verify the involvement of both ARP and ICMP in the address acquisition process of DHCP as per RFC and to validate the results of prior research which assumes ARP or ICMP are used by default in all of devices.
2023-07-21
Neuimin, Oleksandr S., Zhuk, Serhii Ya., Tovkach, Igor O., Malenchyk, Taras V..  2022.  Analysis Of The Small UAV Trajectory Detection Algorithm Based On The “l/n-d” Criterion Using Kalman Filtering Due To FMCW Radar Data. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :741—745.
Promising means of detecting small UAVs are FMCW radar systems. Small UAVs with an RCS value of the order of 10−3••• 10−1m2 are characterized by a low SNR (less than 10 dB). To ensure an acceptable probability of detection in the resolution element (more than 0.9), it becomes necessary to reduce the detection threshold. However, this leads to a significant increase in the probability of false alarms (more than 10−3) and is accompanied by the appearance of a large number of false plots. The work describes an algorithm for trajectory detecting of a small UAV based on a “l/n-d” criterion using Kalman filtering in a spherical coordinate system due to FMCW radar data. Statistical analysis of algorithms based on two types of criteria “3/5-2” and “5/9-2” is performed. It is shown that the algorithms allow to achieve the probability of target trajectory detection greater than 0.9 and low probability of false detection of the target trajectory less than 10−4 with the false alarm probability in the resolution element 10−3••• 10−2•
2023-01-20
Rahim, Usva, Siddiqui, Muhammad Faisal, Javed, Muhammad Awais, Nafi, Nazmus.  2022.  Architectural Implementation of AES based 5G Security Protocol on FPGA. 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC). :1–6.
Confidentiality and integrity security are the key challenges in future 5G networks. To encounter these challenges, various signature and key agreement protocols are being implemented in 5G systems to secure high-speed mobile-to-mobile communication. Many security ciphers such as SNOW 3G, Advanced Encryption Standard (AES), and ZUC are used for 5G security. Among these protocols, the AES algorithm has been shown to achieve higher hardware efficiency and throughput in the literature. In this paper, we implement the AES algorithm on Field Programmable Gate Array (FPGA) and real-time performance factors of the AES algorithm were exploited to best fit the needs and requirements of 5G. In addition, several modifications such as partial pipelining and deep pipelining (partial pipelining with sub-module pipelining) are implemented on Virtex 6 FPGA ML60S board to improve the throughput of the proposed design.
2023-02-03
Nelson, Jared Ray, Shekaramiz, Mohammad.  2022.  Authorship Verification via Linear Correlation Methods of n-gram and Syntax Metrics. 2022 Intermountain Engineering, Technology and Computing (IETC). :1–6.
This research evaluates the accuracy of two methods of authorship prediction: syntactical analysis and n-gram, and explores its potential usage. The proposed algorithm measures n-gram, and counts adjectives, adverbs, verbs, nouns, punctuation, and sentence length from the training data, and normalizes each metric. The proposed algorithm compares the metrics of training samples to testing samples and predicts authorship based on the correlation they share for each metric. The severity of correlation between the testing and training data produces significant weight in the decision-making process. For example, if analysis of one metric approximates 100% positive correlation, the weight in the decision is assigned a maximum value for that metric. Conversely, a 100% negative correlation receives the minimum value. This new method of authorship validation holds promise for future innovation in fraud protection, the study of historical documents, and maintaining integrity within academia.
2023-05-19
G, Amritha, Kh, Vishakh, C, Jishnu Shankar V, Nair, Manjula G.  2022.  Autoencoder Based FDI Attack Detection Scheme For Smart Grid Stability. 2022 IEEE 19th India Council International Conference (INDICON). :1—5.
One of the major concerns in the real-time monitoring systems in a smart grid is the Cyber security threat. The false data injection attack is emerging as a major form of attack in Cyber-Physical Systems (CPS). A False data Injection Attack (FDIA) can lead to severe issues like insufficient generation, physical damage to the grid, power flow imbalance as well as economical loss. The recent advancements in machine learning algorithms have helped solve the drawbacks of using classical detection techniques for such attacks. In this article, we propose to use Autoencoders (AE’s) as a novel Machine Learning approach to detect FDI attacks without any major modifications. The performance of the method is validated through the analysis of the simulation results. The algorithm achieves optimal accuracy owing to the unsupervised nature of the algorithm.
2023-04-27
Ahmad, Ashar, Saad, Muhammad, Al Ghamdi, Mohammed, Nyang, DaeHun, Mohaisen, David.  2022.  BlockTrail: A Service for Secure and Transparent Blockchain-Driven Audit Trails. IEEE Systems Journal. 16:1367–1378.
Audit trails are critical components in enterprise business applications, typically used for storing, tracking, and auditing data. Entities in the audit trail applications have weak trust boundaries, which expose them to various security risks and attacks. To harden the security and develop secure by design applications, blockchain technology has been recently introduced in the audit trails. Blockchains take a consensus-driven clean slate approach to equip audit trails with secure and transparent data processing, without a trusted intermediary. On a downside, blockchains significantly increase the space-time complexity of the audit trails, leading to high storage costs and low transaction throughput. In this article, we introduce BlockTrail, a novel blockchain architecture that fragments the legacy blockchain systems into layers of codependent hierarchies, thereby reducing the space-time complexity and increasing the throughput. BlockTrail is prototyped on the “practical Byzantine fault tolerance” protocol with a custom-built blockchain. Experiments with BlockTrail show that compared to the conventional schemes, BlockTrail is secure and efficient, with low storage footprint.
Conference Name: IEEE Systems Journal
2023-04-14
Salman, Hanadi, Naderi, Sanaz, Arslan, Hüseyin.  2022.  Channel-Dependent Code Allocation for Downlink MC-CDMA System Aided Physical Layer Security. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
Spreading codes are the core of the spread spectrum transmission. In this paper, a novel channel-dependent code allocation procedure for enhancing security in multi-carrier code division multiple access (MC-CDMA) system is proposed and investigated over frequency-selective fading. The objective of the proposed technique is to assign the codes to every subcarrier of active/legitimate receivers (Rxs) based on their channel frequency response (CFR). By that, we ensure security for legitimate Rxs against eavesdropping while preserving mutual confidentiality between the legitimate Rxs themselves. To do so, two assigning modes; fixed assigning mode (FAM) and adaptive assigning mode (AAM), are exploited. The effect of the channel estimation error and the number of legitimate Rxs on the bit error rate (BER) performance is studied. The presented simulations show that AAM provides better security with a complexity trade-off compared to FAM. While the latter is more robust against the imperfection of channel estimation.
ISSN: 2577-2465
2023-07-20
Lourens, Melanie, Naureen, Ayesha, Guha, Shouvik Kumar, Ahamad, Shahanawaj, Dharamvir, Tripathi, Vikas.  2022.  Circumstantial Discussion on Security and Privacy Protection using Cloud Computing Technology. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :1589—1593.
Cloud computing is becoming a demanding technology due to its flexibility, sensibility and remote accessibility. Apart from these applications of cloud computing, privacy and security are two terms that pose a circumstantial discussion. Various authors have argued on this topic that cloud computing is more secure than other data sharing and storing methods. The conventional data storing system is a computer system or smartphone storage. The argument debate also states that cloud computing is vulnerable to enormous types of attacks which make it a more concerning technology. This current study has also tried to draw the circumstantial and controversial debate on the security and privacy system of cloud computing. Primary research has been conducted with 65 cloud computing experts to understand whether a cloud computing security technique is highly secure or not. An online survey has been conducted with them where they provided their opinions based on the security and privacy system of cloud computing. Findings showed that no particular technology is available which can provide maximum security. Although the respondents agreed that blockchain is a more secure cloud computing technology; however, the blockchain also has certain threats which need to be addressed. The study has found essential encryption systems that can be integrated to strengthen security; however, continuous improvement is required.
2023-07-18
Nguyen, Bien-Cuong, Pham, Cong-Kha.  2022.  A Combined Blinding-Shuffling Online Template Attacks Countermeasure Based on Randomized Domain Montgomery Multiplication. 2022 IEEE International Conference on Consumer Electronics (ICCE). :1—6.
Online template attacks (OTA), high-efficiency side-channel attacks, are initially presented to attack the elliptic curve scalar. The modular exponentiation is similarly vulnerable to OTA. The correlation between modular multiplication's intermediate products is a crucial leakage of the modular exponent. This paper proposed a practical OTA countermeasure based on randomized domain Montgomery multiplication, which combines blinding and shuffling methods to eliminate the correlation between modular multiplication's inner products without additional computation requirements. The proposed OTA countermeasure is implemented on the Sakura-G board with a suppose that the target board and template board are identical. The experiment results show that the proposed countermeasure is sufficient to protect the modular exponentiation from OTA.
2023-05-26
Sergeevich, Basan Alexander, Elena Sergeevna, Basan, Nikolaevna, Ivannikova Tatyana, Sergey Vitalievich, Korchalovsky, Dmitrievna, Mikhailova Vasilisa, Mariya Gennadievna, Shulika.  2022.  The concept of the knowledge base of threats to cyber-physical systems based on the ontological approach. 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). :90—95.
Due to the rapid development of cyber-physical systems, there are more and more security problems. The purpose of this work is to develop the concept of a knowledge base in the field of security of cyber-physical systems based on an ontological approach. To create the concept of a knowledge base, it was necessary to consider the system of a cyber-physical system and highlight its structural parts. As a result, the main concepts of the security of a cyber-physical system were identified and the concept of a knowledge base was drawn up, which in the future will help to analyze potential threats to cyber-physical systems.
2023-05-30
Aljohani, Nader, Agnew, Dennis, Nagaraj, Keerthiraj, Boamah, Sharon A., Mathieu, Reynold, Bretas, Arturo S., McNair, Janise, Zare, Alina.  2022.  Cross-Layered Cyber-Physical Power System State Estimation towards a Secure Grid Operation. 2022 IEEE Power & Energy Society General Meeting (PESGM). :1—5.
In the Smart Grid paradigm, this critical infrastructure operation is increasingly exposed to cyber-threats due to the increased dependency on communication networks. An adversary can launch an attack on a power grid operation through False Data Injection into system measurements and/or through attacks on the communication network, such as flooding the communication channels with unnecessary data or intercepting messages. A cross-layered strategy that combines power grid data, communication grid monitoring and Machine Learning-based processing is a promising solution for detecting cyber-threats. In this paper, an implementation of an integrated solution of a cross-layer framework is presented. The advantage of such a framework is the augmentation of valuable data that enhances the detection of anomalies in the operation of power grid. IEEE 118-bus system is built in Simulink to provide a power grid testing environment and communication network data is emulated using SimComponents. The performance of the framework is investigated under various FDI and communication attacks.
2023-06-22
Chavan, Neeta, Kukreja, Mohit, Jagwani, Gaurav, Nishad, Neha, Deb, Namrata.  2022.  DDoS Attack Detection and Botnet Prevention using Machine Learning. 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1159–1163.
One of the major threats in the cyber security and networking world is a Distributed Denial of Service (DDoS) attack. With massive development in Science and Technology, the privacy and security of various organizations are concerned. Computer Intrusion and DDoS attacks have always been a significant issue in networked environments. DDoS attacks result in non-availability of services to the end-users. It interrupts regular traffic flow and causes a flood of flooded packets, causing the system to crash. This research presents a Machine Learning-based DDoS attack detection system to overcome this challenge. For the training and testing purpose, we have used the NSL-KDD Dataset. Logistic Regression Classifier, Support Vector Machine, K Nearest Neighbour, and Decision Tree Classifier are examples of machine learning algorithms which we have used to train our model. The accuracy gained are 90.4, 90.36, 89.15 and 82.28 respectively. We have added a feature called BOTNET Prevention, which scans for Phishing URLs and prevents a healthy device from being a part of the botnet.
ISSN: 2575-7288
2023-08-23
Nalinipriya, G, Govarthini, V, Kayalvizhi, S., Christika, S, Vishvaja, J., Royal Amara, Kumar Raghuveer.  2022.  DefendR - An Advanced Security Model Using Mini Filter in Unix Multi-Operating System. 2022 8th International Conference on Smart Structures and Systems (ICSSS). :1—6.
DefendR is a Security operation used to block the access of the user to edit or overwrite the contents in our personal file that is stored in our system. This approach of applying a certain filter for the sensitive or sensitive data that are applicable exclusively in read-only mode. This is an improvisation of security for the personal data that restricts undo or redo related operations in the shared file. We use a mini-filter driver tool. Specifically, IRP (Incident Response Plan)-based I/O operations, as well as fast FSFilter callback activities, may additionally all be filtered with a mini-filter driver. A mini-filter can register a preoperation callback procedure, a postoperative Each of the I/O operations it filters is filtered by a callback procedure. By registering all necessary callback filtering methods in a filter manager, a mini-filter driver interfaces to the file system indirectly. When a mini-filter is loaded, the latter is a Windows file system filter driver that is active and connects to the file system stack.
2023-06-09
Zhang, Yue, Nan, Xiaoya, Zhou, Jialing, Wang, Shuai.  2022.  Design of Differential Privacy Protection Algorithms for Cyber-Physical Systems. 2022 International Conference on Intelligent Systems and Computational Intelligence (ICISCI). :29—34.
A new privacy Laplace common recognition algorithm is designed to protect users’ privacy data in this paper. This algorithm disturbs state transitions and information generation functions using exponentially decaying Laplace noise to avoid attacks. The mean square consistency and privacy protection performance are further studied. Finally, the theoretical results obtained are verified by performing numerical simulations.
2023-07-18
Nguyen, Thanh Tuan, Nguyen, Thanh Phuong, Tran, Thanh-Hai.  2022.  Detecting Reflectional Symmetry of Binary Shapes Based on Generalized R-Transform. 2022 International Conference on Multimedia Analysis and Pattern Recognition (MAPR). :1—6.
Analyzing reflectionally symmetric features inside an image is one of the important processes for recognizing the peculiar appearance of natural and man-made objects, biological patterns, etc. In this work, we will point out an efficient detector of reflectionally symmetric shapes by addressing a class of projection-based signatures that are structured by a generalized \textbackslashmathcalR\_fm-transform model. To this end, we will firstly prove the \textbackslashmathcalR\_fmˆ-transform in accordance with reflectional symmetry detection. Then different corresponding \textbackslashmathcalR\_fm-signatures of binary shapes are evaluated in order to determine which the corresponding exponentiation of the \textbackslashmathcalR\_fm-transform is the best for the detection. Experimental results of detecting on single/compound contour-based shapes have validated that the exponentiation of 10 is the most discriminatory, with over 2.7% better performance on the multiple-axis shapes in comparison with the conventional one. Additionally, the proposed detector also outperforms most of other existing methods. This finding should be recommended for applications in practice.