Biblio
As cloud computing becomes increasingly pervasive, it is critical for cloud providers to support basic security controls. Although major cloud providers tout such features, relatively little is known in many cases about their design and implementation. In this paper, we describe several security features in OpenStack, a widely-used, open source cloud computing platform. Our contributions to OpenStack range from key management and storage encryption to guaranteeing the integrity of virtual machine (VM) images prior to boot. We describe the design and implementation of these features in detail and provide a security analysis that enumerates the threats that each mitigates. Our performance evaluation shows that these security features have an acceptable cost-in some cases, within the measurement error observed in an operational cloud deployment. Finally, we highlight lessons learned from our real-world development experiences from contributing these features to OpenStack as a way to encourage others to transition their research into practice.
The start-up value of an SRAM cell is unique, random, and unclonable as it is determined by the inherent process mismatch between transistors. These properties make SRAM an attractive circuit for generating encryption keys. The primary challenge for SRAM based key generation, however, is the poor stability when the circuit is subject to random noise, temperature and voltage changes, and device aging. Temporal majority voting (TMV) and bit masking were used in previous works to identify and store the location of unstable or marginally stable SRAM cells. However, TMV requires a long test time and significant hardware resources. In addition, the number of repetitive power-ups required to find the most stable cells is prohibitively high. To overcome the shortcomings of TMV, we propose a novel data remanence based technique to detect SRAM cells with the highest stability for reliable key generation. This approach requires only two remanence tests: writing `1' (or `0') to the entire array and momentarily shutting down the power until a few cells flip. We exploit the fact that the cells that are easily flipped are the most robust cells when written with the opposite data. The proposed method is more effective in finding the most stable cells in a large SRAM array than a TMV scheme with 1,000 power-up tests. Experimental studies show that the 256-bit key generated from a 512 kbit SRAM using the proposed data remanence method is 100% stable under different temperatures, power ramp up times, and device aging.
Now a day's cloud technology is a new example of computing that pays attention to more computer user, government agencies and business. Cloud technology brought more advantages particularly in every-present services where everyone can have a right to access cloud computing services by internet. With use of cloud computing, there is no requirement for physical servers or hardware that will help the computer system of company, networks and internet services. One of center services offered by cloud technology is storing the data in remote storage space. In the last few years, storage of data has been realized as important problems in information technology. In cloud computing data storage technology, there are some set of significant policy issues that includes privacy issues, anonymity, security, government surveillance, telecommunication capacity, liability, reliability and among others. Although cloud technology provides a lot of benefits, security is the significant issues between customer and cloud. Normally cloud computing technology has more customers like as academia, enterprises, and normal users who have various incentives to go to cloud. If the clients of cloud are academia, security result on computing performance and for this types of clients cloud provider's needs to discover a method to combine performance and security. In this research paper the more significant issue is security but with diverse vision. High performance might be not as dangerous for them as academia. In our paper, we design an efficient secure and verifiable outsourcing protocol for outsourcing data. We develop extended QP problem protocol for storing and outsourcing a data securely. To achieve the data security correctness, we validate the result returned through the cloud by Karush\_Kuhn\_Tucker conditions that are sufficient and necessary for the most favorable solution.
Data Deduplication provides lots of benefits to security and privacy issues which can arise as user's sensitive data at risk of within and out of doors attacks. Traditional secret writing that provides knowledge confidentiality is incompatible with knowledge deduplication. Ancient secret writing wants completely different users to encode their knowledge with their own keys. Thus, identical knowledge copies of completely different various users can result in different ciphertexts that makes Deduplication not possible. Convergent secret writing has been planned to enforce knowledge confidentiality whereas creating Deduplication possible. It encrypts/decrypts a knowledge copy with a confluent key, that is obtained by computing the cryptographical hash price of the content of the information copy. Once generation of key and encryption, the user can retain the keys and send ciphertext to cloud.
We present DECANTeR, a system to detect anomalous outbound HTTP communication, which passively extracts fingerprints for each application running on a monitored host. The goal of our system is to detect unknown malware and backdoor communication indicated by unknown fingerprints extracted from a host's network traffic. We evaluate a prototype with realistic data from an international organization and datasets composed of malicious traffic. We show that our system achieves a false positive rate of 0.9% for 441 monitored host machines, an average detection rate of 97.7%, and that it cannot be evaded by malware using simple evasion techniques such as using known browser user agent values. We compare our solution with DUMONT [24], the current state-of-the-art IDS which detects HTTP covert communication channels by focusing on benign HTTP traffic. The results show that DECANTeR outperforms DUMONT in terms of detection rate, false positive rate, and even evasion-resistance. Finally, DECANTeR detects 96.8% of information stealers in our dataset, which shows its potential to detect data exfiltration.
As the Internet of Thing (IoT) matures, a lot of concerns are being raised about security, privacy and interoperability. The Web of Things (WoT) model leverages web technologies to improve interoperability. Due to its distributed components, the web scaled well beyond initial expectations. Still, secure authentication and communication across organization boundaries rely on the Public Key Infrastructure (PKI) which is a non-transparent, centralized single point of failure. We can improve transparency and reduce the chain of trust–-thus significantly improving the IoT security–-by empowering blockchain technology and web security standards. In this paper, we build a scalable, decentralized IoT-centric PKI and discuss how we can combine it with the emerging web authentication and authorization framework for constrained environments.
Deep Learning has recently become hugely popular in machine learning for its ability to solve end-to-end learning systems, in which the features and the classifiers are learned simultaneously, providing significant improvements in classification accuracy in the presence of highly-structured and large databases. Its success is due to a combination of recent algorithmic breakthroughs, increasingly powerful computers, and access to significant amounts of data. Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15. Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level differential privacy applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).
Hashing has been a widely-adopted technique for nearest neighbor search in large-scale image retrieval tasks. Recent research has shown that leveraging supervised information can lead to high quality hashing. However, the cost of annotating data is often an obstacle when applying supervised hashing to a new domain. Moreover, the results can suffer from the robustness problem as the data at training and test stage may come from different distributions. This paper studies the exploration of generating synthetic data through semi-supervised generative adversarial networks (GANs), which leverages largely unlabeled and limited labeled training data to produce highly compelling data with intrinsic invariance and global coherence, for better understanding statistical structures of natural data. We demonstrate that the above two limitations can be well mitigated by applying the synthetic data for hashing. Specifically, a novel deep semantic hashing with GANs (DSH-GANs) is presented, which mainly consists of four components: a deep convolution neural networks (CNN) for learning image representations, an adversary stream to distinguish synthetic images from real ones, a hash stream for encoding image representations to hash codes and a classification stream. The whole architecture is trained end-to-end by jointly optimizing three losses, i.e., adversarial loss to correct label of synthetic or real for each sample, triplet ranking loss to preserve the relative similarity ordering in the input real-synthetic triplets and classification loss to classify each sample accurately. Extensive experiments conducted on both CIFAR-10 and NUS-WIDE image benchmarks validate the capability of exploiting synthetic images for hashing. Our framework also achieves superior results when compared to state-of-the-art deep hash models.
Recently, digital transactions in real estate, insurance, etc. have become popular, and researchers are actively studying digital signatures as a method for distinguishing individuals. However, existing digital signature systems have different methods for making signatures depending on the platform and device, and because they are used on platforms owned by corporations, they have the disadvantage of being highly platform-dependent and having low software extensibility. Therefore, in this paper we have analyzed existing digital signature systems and designed a heterogeneous integrated digital signature system which has per-user contract management features and can guarantee platform independence and increase the ease of software extension and maintenance by using a browser environment.
The aim of this paper is to find cellular automata (CA) rules that are used to describe S-boxes with good cryptographic properties and low implementation cost. Up to now, CA rules have been used in several ciphers to define an S-box, but in all those ciphers, the same CA rule is used. This CA rule is best known as the one defining the Keccak $\chi$ transformation. Since there exists no straightforward method for constructing CA rules that define S-boxes with good cryptographic/implementation properties, we use a special kind of heuristics for that – Genetic Programming (GP). Although it is not possible to theoretically prove the efficiency of such a method, our experimental results show that GP is able to find a large number of CA rules that define good S-boxes in a relatively easy way. We focus on the 4 x 4 and 5 x 5 sizes and we implement the S-boxes in hardware to examine implementation properties like latency, area, and power. Particularly interesting is the internal encoding of the solutions in the considered heuristics using combinatorial circuits; this makes it easy to approximate S-box implementation properties like latency and area a priori.
In recent years, with the advances in JavaScript engines and the adoption of HTML5 APIs, web applications begin to show a tendency to shift their functionality from the server side towards the client side, resulting in dense and complex interactions with HTML documents using the Document Object Model (DOM). As a consequence, client-side vulnerabilities become more and more prevalent. In this paper, we focus on DOM-sourced Cross-site Scripting (XSS), which is a kind of severe but not well-studied vulnerability appearing in browser extensions. Comparing with conventional DOM-based XSS, a new attack surface is introduced by DOM-sourced XSS where the DOM could become a vulnerable source as well besides common sources such as URLs and form inputs. To discover such vulnerability, we propose a detecting framework employing hybrid analysis with two phases. The first phase is the lightweight static analysis consisting of a text filter and an abstract syntax tree parser, which produces potential vulnerable candidates. The second phase is the dynamic symbolic execution with an additional component named shadow DOM, generating a document as a proof-of-concept exploit. In our large-scale real-world experiment, 58 previously unknown DOM-sourced XSS vulnerabilities were discovered in user scripts of the popular browser extension Greasemonkey.
With Wireless Access in Vehicular Environment (WAVE) finalized for legal enforcement from 2020 after the recent move by the U.S. Government, data plausibility is still an unresolved security issue. In particular, an attacker may forge false position values in safety beacons in order to cause unsafe response from startled receiving vehicles. The data plausibility is a longstanding issue for which various approaches based on sensor fusion, behavior analysis and communication constraints have been proposed, but none of these completely solve the problem. This paper proposes an angle of arrival (AoA) based method to invalidate position forging adversaries such as roadside attackers. Built entirely on the WAVE framework, it can be used even when the traditional sensor fusion-based or behavior-based check is inapplicable. The proposed approach is a completely passive scheme that does not require more than an additional antenna that is strongly recommended for performance anyway.
Anomaly detection for cyber-security defence hasgarnered much attention in recent years providing an orthogonalapproach to traditional signature-based detection systems.Anomaly detection relies on building probability models ofnormal computer network behaviour and detecting deviationsfrom the model. Most data sets used for cyber-security havea mix of user-driven events and automated network events,which most often appears as polling behaviour. Separating theseautomated events from those caused by human activity is essentialto building good statistical models for anomaly detection. This articlepresents a changepoint detection framework for identifyingautomated network events appearing as periodic subsequences ofevent times. The opening event of each subsequence is interpretedas a human action which then generates an automated, periodicprocess. Difficulties arising from the presence of duplicate andmissing data are addressed. The methodology is demonstrated usingauthentication data from Los Alamos National Laboratory'senterprise computer network.
In this paper, we propose a technique to detect phishing attacks based on behavior of human when exposed to fake website. Some online users submit fake credentials to the login page before submitting their actual credentials. He/She observes the login status of the resulting page to check whether the website is fake or legitimate. We automate the same behavior with our application (FeedPhish) which feeds fake values into login page. If the web page logs in successfully, it is classified as phishing otherwise it undergoes further heuristic filtering. If the suspicious site passes through all heuristic filters then the website is classified as a legitimate site. As per the experimentation results, our application has achieved a true positive rate of 97.61%, true negative rate of 94.37% and overall accuracy of 96.38%. Our application neither demands third party services nor prior knowledge like web history, whitelist or blacklist of URLS. It is able to detect not only zero-day phishing attacks but also detects phishing sites which are hosted on compromised domains.
Many IoT devices are part of fixed critical infrastructure, where the mere act of moving an IoT device may constitute an attack. Moving pressure, chemical and radiation sensors in a factory can have devastating consequences. Relocating roadside speed sensors, or smart meters without knowledge of command and control center can similarly wreck havoc. Consequently, authenticating geolocation of IoT devices is an important problem. Unfortunately, an IoT device itself may be compromised by an adversary. Hence, location information from the IoT device cannot be trusted. Thus, we have to rely on infrastructure to obtain a proximal location. Infrastructure routers may similarly be compromised. Therefore, there must be a way to authenticate trusted routers remotely. Unfortunately, IP packets may be blocked, hijacked or forged by an adversary. Therefore IP packets are not trustworthy either. Thus, we resort to covert channels for authenticating Internet packet routers as an intermediate step towards proximal geolocation of IoT devices. Several techniques have been proposed in the literature to obtain the geolocation of an edge device, but it has been shown that a knowledgeable adversary can circumvent these techniques. In this paper, we survey the state-of-the-art geolocation techniques and corresponding adversarial countermeasures to evade geolocation to justify the use of covert channels on networks. We propose a technique for determining proximal geolocation using covert channel. Challenges and directions for future work are also explored.
This paper studies the multi-agent average consensus problem under the requirement of differential privacy of the agents' initial states against an adversary that has access to all messages. As a fundamental limitation, we first establish that a differentially private consensus algorithm cannot guarantee convergence of the agents' states to the exact average in distribution, which in turn implies the same impossibility for other stronger notions of convergence. This result motives our design of a novel differentially private Laplacian consensus algorithm in which agents linearly perturb their state-transition and message-generating functions with exponentially decaying Laplace noise. We prove that our algorithm converges almost surely to an unbiased estimate of the average of the agents' initial states, compute the exponential mean-square rate of convergence, and formally characterize its differential privacy properties. Furthermore, we also find explicit optimal values of the design parameters that minimize the variance of the algorithm's convergence point around the exact average. Various simulations illustrate our results.
We study a class of distributed convex constrained optimization problem where a group of agents aims to minimize the sum of individual objective functions while each desires to keep its function differentially private. We prove the impossibility of achieving differential privacy using strategies based on perturbing with noise the inter-agent messages when the underlying noise-free dynamics is asymptotically stable. This justifies our algorithmic solution based on the perturbation of the individual objective functions with Laplace noise within the framework of functional differential privacy. We carefully design post-processing steps that ensure the perturbed functions regain the smoothness and convexity properties of the original functions while preserving the differentially private guarantees of the functional perturbation step. This methodology allows to use any distributed coordination algorithm to solve the optimization problem on the noisy functions. Finally, we explicitly bound the magnitude of the expected distance between the perturbed and true optimizers, and characterize the privacy-accuracy trade-off. Simulations illustrate our results.
To appear
We use model-based testing techniques to detect logical vulnerabilities in implementations of the Wi-Fi handshake. This reveals new fingerprinting techniques, multiple downgrade attacks, and Denial of Service (DoS) vulnerabilities. Stations use the Wi-Fi handshake to securely connect with wireless networks. In this handshake, mutually supported capabilities are determined, and fresh pairwise keys are negotiated. As a result, a proper implementation of the Wi-Fi handshake is essential in protecting all subsequent traffic. To detect the presence of erroneous behaviour, we propose a model-based technique that generates a set of representative test cases. These tests cover all states of the Wi-Fi handshake, and explore various edge cases in each state. We then treat the implementation under test as a black box, and execute all generated tests. Determining whether a failed test introduces a security weakness is done manually. We tested 12 implementations using this approach, and discovered irregularities in all of them. Our findings include fingerprinting mechanisms, DoS attacks, and downgrade attacks where an adversary can force usage of the insecure WPA-TKIP cipher. Finally, we explain how one of our downgrade attacks highlights incorrect claims made in the 802.11 standard.
Distractor generation is a crucial step for fill-in-the-blank question generation. We propose a generative model learned from training generative adversarial nets (GANs) to create useful distractors. Our method utilizes only context information and does not use the correct answer, which is completely different from previous Ontology-based or similarity-based approaches. Trained on the Wikipedia corpus, the proposed model is able to predict Wiki entities as distractors. Our method is evaluated on two biology question datasets collected from Wikipedia and actual college-level exams. Experimental results show that our context-based method achieves comparable performance to a frequently used word2vec-based method for the Wiki dataset. In addition, we propose a second-stage learner to combine the strengths of the two methods, which further improves the performance on both datasets, with 51.7% and 48.4% of generated distractors being acceptable.