Biblio

Found 2459 results

Filters: First Letter Of Last Name is R  [Clear All Filters]
2021-05-05
Rizvi, Syed R, Lubawy, Andrew, Rattz, John, Cherry, Andrew, Killough, Brian, Gowda, Sanjay.  2020.  A Novel Architecture of Jupyterhub on Amazon Elastic Kubernetes Service for Open Data Cube Sandbox. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. :3387—3390.

The Open Data Cube (ODC) initiative, with support from the Committee on Earth Observation Satellites (CEOS) System Engineering Office (SEO) has developed a state-of-the-art suite of software tools and products to facilitate the analysis of Earth Observation data. This paper presents a short summary of our novel architecture approach in a project related to the Open Data Cube (ODC) community that provides users with their own ODC sandbox environment. Users can have a sandbox environment all to themselves for the purpose of running Jupyter notebooks that leverage the ODC. This novel architecture layout will remove the necessity of hosting multiple users on a single Jupyter notebook server and provides better management tooling for handling resource usage. In this new layout each user will have their own credentials which will give them access to a personal Jupyter notebook server with access to a fully deployed ODC environment enabling exploration of solutions to problems that can be supported by Earth observation data.

2021-03-04
Wang, H., Sayadi, H., Kolhe, G., Sasan, A., Rafatirad, S., Homayoun, H..  2020.  Phased-Guard: Multi-Phase Machine Learning Framework for Detection and Identification of Zero-Day Microarchitectural Side-Channel Attacks. 2020 IEEE 38th International Conference on Computer Design (ICCD). :648—655.

Microarchitectural Side-Channel Attacks (SCAs) have emerged recently to compromise the security of computer systems by exploiting the existing processors' hardware vulnerabilities. In order to detect such attacks, prior studies have proposed the deployment of low-level features captured from built-in Hardware Performance Counter (HPC) registers in modern microprocessors to implement accurate Machine Learning (ML)-based SCAs detectors. Though effective, such attack detection techniques have mainly focused on binary classification models offering limited insights on identifying the type of attacks. In addition, while existing SCAs detectors required prior knowledge of attacks applications to detect the pattern of side-channel attacks using a variety of microarchitectural features, detecting unknown (zero-day) SCAs at run-time using the available HPCs remains a major challenge. In response, in this work we first identify the most important HPC features for SCA detection using an effective feature reduction method. Next, we propose Phased-Guard, a two-level machine learning-based framework to accurately detect and classify both known and unknown attacks at run-time using the most prominent low-level features. In the first level (SCA Detection), Phased-Guard using a binary classification model detects the existence of SCAs on the target system by determining the critical scenarios including system under attack and system under no attack. In the second level (SCA Identification) to further enhance the security against side-channel attacks, Phased-Guard deploys a multiclass classification model to identify the type of SCA applications. The experimental results indicate that Phased-Guard by monitoring only the victim applications' microarchitectural HPCs data, achieves up to 98 % attack detection accuracy and 99.5% SCA identification accuracy significantly outperforming the state-of-the-art solutions by up to 82 % in zero-day attack detection at the cost of only 4% performance overhead for monitoring.

2021-05-05
Ulrich, Jacob, McJunkin, Timothy, Rieger, Craig, Runyon, Michael.  2020.  Scalable, Physical Effects Measurable Microgrid for Cyber Resilience Analysis (SPEMMCRA). 2020 Resilience Week (RWS). :194—201.

The ability to advance the state of the art in automated cybersecurity protections for industrial control systems (ICS) has as a prerequisite of understanding the trade-off space. That is, to enable a cyber feedback loop in a control system environment you must first consider both the security mitigation available, the benefits and the impacts to the control system functionality when the mitigation is used. More damaging impacts could be precipitated that the mitigation was intended to rectify. This paper details networked ICS that controls a simulation of the frequency response represented with the swing equation. The microgrid loads and base generation can be balanced through the control of an emulated battery and power inverter. The simulated plant, which is implemented in Raspberry Pi computers, provides an inexpensive platform to realize the physical effects of cyber attacks to show the trade-offs of available mitigating actions. This network design can include a commercial ICS controller and simple plant or emulated plant to introduce real world implementation of feedback controls, and provides a scalable, physical effects measurable microgrid for cyber resilience analysis (SPEMMCRA).

2021-10-04
Reshikeshan, Sree Subiksha M., Illindala, Mahesh S..  2020.  Systematically Encoded Polynomial Codes to Detect and Mitigate High-Status-Number Attacks in Inter-Substation GOOSE Communications. 2020 IEEE Industry Applications Society Annual Meeting. :1–7.
Inter-substation Generic Object Oriented Substation Events (GOOSE) communications that are used for critical protection functions have several cyber-security vulnerabilities. GOOSE messages are directly mapped to the Layer 2 Ethernet without network and transport layer headers that provide data encapsulation. The high-status-number attack is a malicious attack on GOOSE messages that allows hackers to completely take over intelligent electronic devices (IEDs) subscribing to GOOSE communications. The status-number parameter of GOOSE messages, stNum is tampered with in these attacks. Given the strict delivery time requirement of 3 ms for GOOSE messaging, it is infeasible to encrypt the GOOSE payload. This work proposes to secure the sensitive stNum parameter of the GOOSE payload using systematically encoded polynomial codes. Exploiting linear codes allows for the security features to be encoded in linear time, in contrast to complex hashing algorithms. At the subscribing IED, the security feature is used to verify that the stNum parameter has not been tampered with during transmission in the insecure medium. The decoding and verification using syndrome computation at the subscriber IED is also accomplished in linear time.
2021-06-02
Gursoy, M. Emre, Rajasekar, Vivekanand, Liu, Ling.  2020.  Utility-Optimized Synthesis of Differentially Private Location Traces. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :30—39.
Differentially private location trace synthesis (DPLTS) has recently emerged as a solution to protect mobile users' privacy while enabling the analysis and sharing of their location traces. A key challenge in DPLTS is to best preserve the utility in location trace datasets, which is non-trivial considering the high dimensionality, complexity and heterogeneity of datasets, as well as the diverse types and notions of utility. In this paper, we present OptaTrace: a utility-optimized and targeted approach to DPLTS. Given a real trace dataset D, the differential privacy parameter ε controlling the strength of privacy protection, and the utility/error metric Err of interest; OptaTrace uses Bayesian optimization to optimize DPLTS such that the output error (measured in terms of given metric Err) is minimized while ε-differential privacy is satisfied. In addition, OptaTrace introduces a utility module that contains several built-in error metrics for utility benchmarking and for choosing Err, as well as a front-end web interface for accessible and interactive DPLTS service. Experiments show that OptaTrace's optimized output can yield substantial utility improvement and error reduction compared to previous work.
2021-05-05
Rana, Krishan, Dasagi, Vibhavari, Talbot, Ben, Milford, Michael, Sünderhauf, Niko.  2020.  Multiplicative Controller Fusion: Leveraging Algorithmic Priors for Sample-efficient Reinforcement Learning and Safe Sim-To-Real Transfer. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). :6069—6076.
Learning-based approaches often outperform hand-coded algorithmic solutions for many problems in robotics. However, learning long-horizon tasks on real robot hardware can be intractable, and transferring a learned policy from simulation to reality is still extremely challenging. We present a novel approach to model-free reinforcement learning that can leverage existing sub-optimal solutions as an algorithmic prior during training and deployment. During training, our gated fusion approach enables the prior to guide the initial stages of exploration, increasing sample-efficiency and enabling learning from sparse long-horizon reward signals. Importantly, the policy can learn to improve beyond the performance of the sub-optimal prior since the prior's influence is annealed gradually. During deployment, the policy's uncertainty provides a reliable strategy for transferring a simulation-trained policy to the real world by falling back to the prior controller in uncertain states. We show the efficacy of our Multiplicative Controller Fusion approach on the task of robot navigation and demonstrate safe transfer from simulation to the real world without any fine-tuning. The code for this project is made publicly available at https://sites.google.com/view/mcf-nav/home.
2022-10-16
Lee, Sungho, Lee, Hyogun, Ryu, Sukyoung.  2020.  Broadening Horizons of Multilingual Static Analysis: Semantic Summary Extraction from C Code for JNI Program Analysis. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :127–137.
Most programming languages support foreign language interoperation that allows developers to integrate multiple modules implemented in different languages into a single multilingual program. While utilizing various features from multiple languages expands expressivity, differences in language semantics require developers to understand the semantics of multiple languages and their inter-operation. Because current compilers do not support compile-time checking for interoperation, they do not help developers avoid in-teroperation bugs. Similarly, active research on static analysis and bug detection has been focusing on programs written in a single language. In this paper, we propose a novel approach to analyze multilingual programs statically. Unlike existing approaches that extend a static analyzer for a host language to support analysis of foreign function calls, our approach extracts semantic summaries from programs written in guest languages using a modular analysis technique, and performs a whole-program analysis with the extracted semantic summaries. To show practicality of our approach, we design and implement a static analyzer for multilingual programs, which analyzes JNI interoperation between Java and C. Our empirical evaluation shows that the analyzer is scalable in that it can construct call graphs for large programs that use JNI interoperation, and useful in that it found 74 genuine interoperation bugs in real-world Android JNI applications.
2021-05-25
Dodson, Michael, Beresford, Alastair R., Richardson, Alexander, Clarke, Jessica, Watson, Robert N. M..  2020.  CHERI Macaroons: Efficient, host-based access control for cyber-physical systems. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :688–693.
Cyber-Physical Systems (CPS) often rely on network boundary defence as a primary means of access control; therefore, the compromise of one device threatens the security of all devices within the boundary. Resource and real-time constraints, tight hardware/software coupling, and decades-long service lifetimes complicate efforts for more robust, host-based access control mechanisms. Distributed capability systems provide opportunities for restoring access control to resource-owning devices; however, such a protection model requires a capability-based architecture for CPS devices as well as task compartmentalisation to be effective.This paper demonstrates hardware enforcement of network bearer tokens using an efficient translation between CHERI (Capability Hardware Enhanced RISC Instructions) architectural capabilities and Macaroon network tokens. While this method appears to generalise to any network-based access control problem, we specifically consider CPS, as our method is well-suited for controlling resources in the physical domain. We demonstrate the method in a distributed robotics application and in a hierarchical industrial control application, and discuss our plans to evaluate and extend the method.
2022-08-12
Stiévenart, Quentin, Roover, Coen De.  2020.  Compositional Information Flow Analysis for WebAssembly Programs. 2020 IEEE 20th International Working Conference on Source Code Analysis and Manipulation (SCAM). :13–24.
WebAssembly is a new W3C standard, providing a portable target for compilation for various languages. All major browsers can run WebAssembly programs, and its use extends beyond the web: there is interest in compiling cross-platform desktop applications, server applications, IoT and embedded applications to WebAssembly because of the performance and security guarantees it aims to provide. Indeed, WebAssembly has been carefully designed with security in mind. In particular, WebAssembly applications are sandboxed from their host environment. However, recent works have brought to light several limitations that expose WebAssembly to traditional attack vectors. Visitors of websites using WebAssembly have been exposed to malicious code as a result. In this paper, we propose an automated static program analysis to address these security concerns. Our analysis is focused on information flow and is compositional. For every WebAssembly function, it first computes a summary that describes in a sound manner where the information from its parameters and the global program state can flow to. These summaries can then be applied during the subsequent analysis of function calls. Through a classical fixed-point formulation, one obtains an approximation of the information flow in the WebAssembly program. This results in the first compositional static analysis for WebAssembly. On a set of 34 benchmark programs spanning 196kLOC of WebAssembly, we compute at least 64% of the function summaries precisely in less than a minute in total.
2021-01-25
Giraldo, J., Kafash, S. H., Ruths, J., Cárdenas, A. A..  2020.  DARIA: Designing Actuators to Resist Arbitrary Attacks Against Cyber-Physical Systems. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :339–353.

In the past decade we have seen an active research community proposing attacks and defenses to Cyber-Physical Systems (CPS). Most of these attacks and defenses have been heuristic in nature, limiting the attacker to a set of predefined operations, and proposing defenses with unclear security guarantees. In this paper, we propose a generic adversary model that can capture any type of attack (our attacker is not constrained to follow specific attacks such as replay, delay, or bias) and use it to design security mechanisms with provable security guarantees. In particular, we propose a new secure design paradigm we call DARIA: Designing Actuators to Resist arbItrary Attacks. The main idea behind DARIA is the design of physical limits to actuators in order to prevent attackers from arbitrarily manipulating the system, irrespective of their point of attack (sensors or actuators) or the specific attack algorithm (bias, replay, delays, etc.). As far as we are aware, we are the first research team to propose the design of physical limits to actuators in a control loop in order to keep the system secure against attacks. We demonstrate the generality of our proposal on simulations of vehicular platooning and industrial processes.

2021-11-29
Sun, Yixin, Jee, Kangkook, Sivakorn, Suphannee, Li, Zhichun, Lumezanu, Cristian, Korts-Parn, Lauri, Wu, Zhenyu, Rhee, Junghwan, Kim, Chung Hwan, Chiang, Mung et al..  2020.  Detecting Malware Injection with Program-DNS Behavior. 2020 IEEE European Symposium on Security and Privacy (EuroS P). :552–568.
Analyzing the DNS traffic of Internet hosts has been a successful technique to counter cyberattacks and identify connections to malicious domains. However, recent stealthy attacks hide malicious activities within seemingly legitimate connections to popular web services made by benign programs. Traditional DNS monitoring and signature-based detection techniques are ineffective against such attacks. To tackle this challenge, we present a new program-level approach that can effectively detect such stealthy attacks. Our method builds a fine-grained Program-DNS profile for each benign program that characterizes what should be the “expected” DNS behavior. We find that malware-injected processes have DNS activities which significantly deviate from the Program-DNS profile of the benign program. We then develop six novel features based on the Program-DNS profile, and evaluate the features on a dataset of over 130 million DNS requests collected from a real-world enterprise and 8 million requests from malware-samples executed in a sandbox environment. We compare our detection results with that of previously-proposed features and demonstrate that our new features successfully detect 190 malware-injected processes which fail to be detected by previously-proposed features. Overall, our study demonstrates that fine-grained Program-DNS profiles can provide meaningful and effective features in building detectors for attack campaigns that bypass existing detection systems.
2021-02-01
Calhoun, C. S., Reinhart, J., Alarcon, G. A., Capiola, A..  2020.  Establishing Trust in Binary Analysis in Software Development and Applications. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1–4.
The current exploratory study examined software programmer trust in binary analysis techniques used to evaluate and understand binary code components. Experienced software developers participated in knowledge elicitations to identify factors affecting trust in tools and methods used for understanding binary code behavior and minimizing potential security vulnerabilities. Developer perceptions of trust in those tools to assess implementation risk in binary components were captured across a variety of application contexts. The software developers reported source security and vulnerability reports provided the best insight and awareness of potential issues or shortcomings in binary code. Further, applications where the potential impact to systems and data loss is high require relying on more than one type of analysis to ensure the binary component is sound. The findings suggest binary analysis is viable for identifying issues and potential vulnerabilities as part of a comprehensive solution for understanding binary code behavior and security vulnerabilities, but relying simply on binary analysis tools and binary release metadata appears insufficient to ensure a secure solution.
2021-02-10
Kerschbaumer, C., Ritter, T., Braun, F..  2020.  Hardening Firefox against Injection Attacks. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :653—663.
Web browsers display content in the form of HTML, CSS and JavaScript retrieved from the world wide web. The loaded content is subject to the web security model and considered untrusted and potentially malicious. To complicate security matters, Firefox uses the same technologies to render its user interface as it does to render untrusted web content which blurs the distinction between the two privilege levels.Getting interactions between the two correct turns out to be complicated and has led to numerous real-world security vulnerabilities. We study those vulnerabilities to discover common threats and explain how we address them systematically to harden Firefox.
2021-02-03
Rehan, S., Singh, R..  2020.  Industrial and Home Automation, Control, Safety and Security System using Bolt IoT Platform. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :787—793.
This paper describes a system that comprises of control, safety and security subsystem for industries and homes. The entire system is based on the Bolt IoT platform. Using this system, the user can control the devices such as LEDs, speed of the fan or DC motor, monitor the temperature of the premises with an alert sub-system for critical temperatures through SMS and call, monitor the presence of anyone inside the premises with an alert sub-system about any intrusion through SMS and call. If the system is used specifically in any industry then instead of monitoring the temperature any other physical quantity, which is critical for that industry, can be monitored using suitable sensors. In addition, the cloud connectivity is provided to the system using the Bolt IoT module and temperature data is sent to the cloud where using machine-learning algorithm the future temperature is predicted to avoid any accidents in the future.
2021-02-10
Romano, A., Zheng, Y., Wang, W..  2020.  MinerRay: Semantics-Aware Analysis for Ever-Evolving Cryptojacking Detection. 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE). :1129—1140.
Recent advances in web technology have made in-browser crypto-mining a viable funding model. However, these services have been abused to launch large-scale cryptojacking attacks to secretly mine cryptocurrency in browsers. To detect them, various signature-based or runtime feature-based methods have been proposed. However, they can be imprecise or easily circumvented. To this end, we propose MinerRay, a generic scheme to detect malicious in-browser cryptominers. Instead of leveraging unreliable external patterns, MinerRay infers the essence of cryptomining behaviors that differentiate mining from common browser activities in both WebAssembly and JavaScript contexts. Additionally, to detect stealthy mining activities without user consents, MinerRay checks if the miner can only be instantiated from user actions. MinerRay was evaluated on over 1 million websites. It detected cryptominers on 901 websites, where 885 secretly start mining without user consent. Besides, we compared MinerRay with five state-of-the-art signature-based or behavior-based cryptominer detectors (MineSweeper, CMTracker, Outguard, No Coin, and minerBlock). We observed that emerging miners with new signatures or new services were detected by MinerRay but missed by others. The results show that our proposed technique is effective and robust in detecting evolving cryptominers, yielding more true positives, and fewer errors.
2021-06-28
Nageswar Rao, A., Rajendra Naik, B., Nirmala Devi, L., Venkata Subbareddy, K..  2020.  Trust and Packet Loss Aware Routing (TPLAR) for Intrusion Detection in WSNs. 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN). :386–391.
In this paper, a new intrusion detection mechanism is proposed based on Trust and Packet Loss Rate at Sensor Node in WSNs. To find the true malicious nodes, the proposed mechanism performs a deep analysis on the packet loss. Two independent metrics such as buffer capacity metric and residual energy metric are considered for packet loss rate evaluation. Further, the trust evaluation also considers the basic communication interactions between sensor nodes. Based on these three metrics, a new composite metric called Packet Forwarding Probability (PFP) is derived through which the malicious nodes are identified. Simulation experiments are conducted over the proposed mechanism and the performance is evaluated through False Positive Rate (FPR) and Malicious Detection Rate (MDR). The results declare that the proposed mechanism achieves a better performance compared to the conventional approaches.
2021-07-27
Islam, M., Rahaman, S., Meng, N., Hassanshahi, B., Krishnan, P., Yao, D. D..  2020.  Coding Practices and Recommendations of Spring Security for Enterprise Applications. 2020 IEEE Secure Development (SecDev). :49—57.
Spring security is tremendously popular among practitioners for its ease of use to secure enterprise applications. In this paper, we study the application framework misconfiguration vulnerabilities in the light of Spring security, which is relatively understudied in the existing literature. Towards that goal, we identify 6 types of security anti-patterns and 4 insecure vulnerable defaults by conducting a measurement-based approach on 28 Spring applications. Our analysis shows that security risks associated with the identified security anti-patterns and insecure defaults can leave the enterprise application vulnerable to a wide range of high-risk attacks. To prevent these high-risk attacks, we also provide recommendations for practitioners. Consequently, our study has contributed one update to the official Spring security documentation while other security issues identified in this study are being considered for future major releases by Spring security community.
2021-03-29
Kummerow, A., Monsalve, C., Rösch, D., Schäfer, K., Nicolai, S..  2020.  Cyber-physical data stream assessment incorporating Digital Twins in future power systems. 2020 International Conference on Smart Energy Systems and Technologies (SEST). :1—6.

Reliable and secure grid operations become more and more challenging in context of increasing IT/OT convergence and decreasing dynamic margins in today's power systems. To ensure the correct operation of monitoring and control functions in control centres, an intelligent assessment of the different information sources is necessary to provide a robust data source in case of critical physical events as well as cyber-attacks. Within this paper, a holistic data stream assessment methodology is proposed using an expert knowledge based cyber-physical situational awareness for different steady and transient system states. This approach goes beyond existing techniques by combining high-resolution PMU data with SCADA information as well as Digital Twin and AI based anomaly detection functionalities.

2021-03-04
Ramadhanty, A. D., Budiono, A., Almaarif, A..  2020.  Implementation and Analysis of Keyboard Injection Attack using USB Devices in Windows Operating System. 2020 3rd International Conference on Computer and Informatics Engineering (IC2IE). :449—454.

Windows is one of the popular operating systems in use today, while Universal Serial Bus (USB) is one of the mechanisms used by many people with practical plug and play functions. USB has long been used as a vector of attacks on computers. One method of attack is Keylogger. The Keylogger can take advantage of existing vulnerabilities in the Windows 10 operating system attacks carried out in the form of recording computer keystroke activity without the victim knowing. In this research, an attack will be carried out by running a Powershell Script using BadUSB to be able to activate the Keylogger program. The script is embedded in the Arduino Pro Micro device. The results obtained in the Keyboard Injection Attack research using Arduino Pro Micro were successfully carried out with an average time needed to run the keylogger is 7.474 seconds with a computer connected to the internet. The results of the keylogger will be sent to the attacker via email.

2021-02-23
Khan, M., Rehman, O., Rahman, I. M. H., Ali, S..  2020.  Lightweight Testbed for Cybersecurity Experiments in SCADA-based Systems. 2020 International Conference on Computing and Information Technology (ICCIT-1441). :1—5.

A rapid rise in cyber-attacks on Cyber Physical Systems (CPS) has been observed in the last decade. It becomes even more concerning that several of these attacks were on critical infrastructures that indeed succeeded and resulted into significant physical and financial damages. Experimental testbeds capable of providing flexible, scalable and interoperable platform for executing various cybersecurity experiments is highly in need by all stakeholders. A container-based SCADA testbed is presented in this work as a potential platform for executing cybersecurity experiments. Through this testbed, a network traffic containing ARP spoofing is generated that represents a Man in the middle (MITM) attack. While doing so, scanning of different systems within the network is performed which represents a reconnaissance attack. The network traffic generated by both ARP spoofing and network scanning are captured and further used for preparing a dataset. The dataset is utilized for training a network classification model through a machine learning algorithm. Performance of the trained model is evaluated through a series of tests where promising results are obtained.

2021-03-09
Anithaashri, T. P., Ravichandran, G..  2020.  Security Enhancement for the Network Amalgamation using Machine Learning Algorithm. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :411—416.

Accessing the secured data through the network is a major task in emerging technology. Data needs to be protected from the network vulnerabilities, malicious users, hackers, sniffers, intruders. The novel framework has been designed to provide high security in data transaction through computer network. The implant of network amalgamation in the recent trends, make the way in security enhancement in an efficient manner through the machine learning algorithm. In this system the usage of the biometric authenticity plays a vital role for unique approach. The novel mathematical approach is used in machine learning algorithms to solve these problems and provide the security enhancement. The result shows that the novel method has consistent improvement in enhancing the security of data transactions in the emerging technologies.

2021-03-04
Riya, S. S., Lalu, V..  2020.  Stable cryptographic key generation using SRAM based Physical Unclonable Function. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :653—657.
Physical unclonable functions(PUFs) are widely used as hardware root-of-trust to secure IoT devices, data and services. A PUF exploits inherent randomness introduced during manufacturing to give a unique digital fingerprint. Static Random-Access Memory (SRAM) based PUFs can be used as a mature technology for authentication. An SRAM with a number of SRAM cells gives an unrepeatable and random pattern of 0's and 1's during power on. As it is a unique pattern, it can be called as SRAM fingerprint and can be used as a PUF. The chance of producing more number of same values (either zero or one) is higher during power on. If a particular value present at almost all the cell during power on, it will lead to the dominance of either zero or one in the cryptographic key sequence. As the cryptographic key is generated by randomly taking address location of SRAM cells, (the subset of power on values of all the SRAM cells)the probability of occurring the same sequence most of the time is higher. In order to avoid that situation, SRAM should have to produce an equal number of zeros and ones during power on. SRAM PUF is implemented in Cadence Virtuoso tool. To generate equal zeros and ones during power on, variations can be done in the physical dimensions and to increase the stability body biasing can be effectively done.
2021-02-03
Mou, W., Ruocco, M., Zanatto, D., Cangelosi, A..  2020.  When Would You Trust a Robot? A Study on Trust and Theory of Mind in Human-Robot Interactions 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). :956—962.

Trust is a critical issue in human-robot interactions (HRI) as it is the core of human desire to accept and use a non-human agent. Theory of Mind (ToM) has been defined as the ability to understand the beliefs and intentions of others that may differ from one's own. Evidences in psychology and HRI suggest that trust and ToM are interconnected and interdependent concepts, as the decision to trust another agent must depend on our own representation of this entity's actions, beliefs and intentions. However, very few works take ToM of the robot into consideration while studying trust in HRI. In this paper, we investigated whether the exposure to the ToM abilities of a robot could affect humans' trust towards the robot. To this end, participants played a Price Game with a humanoid robot (Pepper) that was presented having either low-level ToM or high-level ToM. Specifically, the participants were asked to accept the price evaluations on common objects presented by the robot. The willingness of the participants to change their own price judgement of the objects (i.e., accept the price the robot suggested) was used as the main measurement of the trust towards the robot. Our experimental results showed that robots possessing a high-level of ToM abilities were trusted more than the robots presented with low-level ToM skills.

Razin, Y. S., Feigh, K. M..  2020.  Hitting the Road: Exploring Human-Robot Trust for Self-Driving Vehicles. 2020 IEEE International Conference on Human-Machine Systems (ICHMS). :1—6.

With self-driving cars making their way on to our roads, we ask not what it would take for them to gain acceptance among consumers, but what impact they may have on other drivers. How they will be perceived and whether they will be trusted will likely have a major effect on traffic flow and vehicular safety. This work first undertakes an exploratory factor analysis to validate a trust scale for human-robot interaction and shows how previously validated metrics and general trust theory support a more complete model of trust that has increased applicability in the driving domain. We experimentally test this expanded model in the context of human-automation interaction during simulated driving, revealing how using these dimensions uncovers significant biases within human-robot trust that may have particularly deleterious effects when it comes to sharing our future roads with automated vehicles.

2020-08-24
Renners, Leonard, Heine, Felix, Kleiner, Carsten, Rodosek, Gabi Dreo.  2019.  Adaptive and Intelligible Prioritization for Network Security Incidents. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–8.
Incident prioritization is nowadays a part of many approaches and tools for network security and risk management. However, the dynamic nature of the problem domain is often unaccounted for. That is, the prioritization is typically based on a set of static calculations, which are rarely adjusted. As a result, incidents are incorrectly prioritized, leading to an increased and misplaced effort in the incident response. A higher degree of automation could help to address this problem. In this paper, we explicitly consider flaws in the prioritization an unalterable circumstance. We propose an adaptive incident prioritization, which allows to automate certain tasks for the prioritization model management in order to continuously assess and improve a prioritization model. At the same time, we acknowledge the human analyst as the focal point and propose to keep the human in the loop, among others by treating understandability as a crucial requirement.