Biblio
A novel deep neural network is proposed, for accurate and robust crowd counting. Crowd counting is a complex task, as it strongly depends on the deployed camera characteristics and, above all, the scene perspective. Crowd counting is essential in security applications where Internet of Things (IoT) cameras are deployed to help with crowd management tasks. The complexity of a scene varies greatly, and a medium to large scale security system based on IoT cameras must cater for changes in perspective and how people appear from different vantage points. To address this, our deep architecture extracts multi-scale features with a pyramid contextual module to provide long-range contextual information and enlarge the receptive field. Experiments were run on three major crowd counting datasets, to test our proposed method. Results demonstrate our method supersedes the performance of state-of-the-art methods.
The open-source nature of the Android OS makes it possible for manufacturers to ship custom versions of the OS along with a set of pre-installed apps, often for product differentiation. Some device vendors have recently come under scrutiny for potentially invasive private data collection practices and other potentially harmful or unwanted behavior of the preinstalled apps on their devices. Yet, the landscape of preinstalled software in Android has largely remained unexplored, particularly in terms of the security and privacy implications of such customizations. In this paper, we present the first large- scale study of pre-installed software on Android devices from more than 200 vendors. Our work relies on a large dataset of real-world Android firmware acquired worldwide using crowd-sourcing methods. This allows us to answer questions related to the stakeholders involved in the supply chain, from device manufacturers and mobile network operators to third- party organizations like advertising and tracking services, and social network platforms. Our study allows us to also uncover relationships between these actors, which seem to revolve primarily around advertising and data-driven services. Overall, the supply chain around Android's open source model lacks transparency and has facilitated potentially harmful behaviors and backdoored access to sensitive data and services without user consent or awareness. We conclude the paper with recommendations to improve transparency, attribution, and accountability in the Android ecosystem.
This paper proposes a method for detecting anomalies in video data. A Variational Autoencoder (VAE) is used for reducing the dimensionality of video frames, generating latent space information that is comparable to low-dimensional sensory data (e.g., positioning, steering angle), making feasible the development of a consistent multi-modal architecture for autonomous vehicles. An Adapted Markov Jump Particle Filter defined by discrete and continuous inference levels is employed to predict the following frames and detecting anomalies in new video sequences. Our method is evaluated on different video scenarios where a semi-autonomous vehicle performs a set of tasks in a closed environment.
This paper studies the physical layer security (PLS) of a vehicular network employing a reconfigurable intelligent surface (RIS). RIS technologies are emerging as an important paradigm for the realisation of smart radio environments, where large numbers of small, low-cost and passive elements, reflect the incident signal with an adjustable phase shift without requiring a dedicated energy source. Inspired by the promising potential of RIS-based transmission, we investigate two vehicular network system models: One with vehicle-to-vehicle communication with the source employing a RIS-based access point, and the other model in the form of a vehicular adhoc network (VANET), with a RIS-based relay deployed on a building. Both models assume the presence of an eavesdropper to investigate the average secrecy capacity of the considered systems. Monte-Carlo simulations are provided throughout to validate the results. The results show that performance of the system in terms of the secrecy capacity is affected by the location of the RIS-relay and the number of RIS cells. The effect of other system parameters such as source power and eavesdropper distances are also studied.
The root causes of many security vulnerabilities include a pernicious combination of two problems, often regarded as inescapable aspects of computing. First, the protection mechanisms provided by the mainstream processor architecture and C/C++ language abstractions, dating back to the 1970s and before, provide only coarse-grain virtual-memory-based protection. Second, mainstream system engineering relies almost exclusively on test-and-debug methods, with (at best) prose specifications. These methods have historically sufficed commercially for much of the computer industry, but they fail to prevent large numbers of exploitable bugs, and the security problems that this causes are becoming ever more acute.In this paper we show how more rigorous engineering methods can be applied to the development of a new security-enhanced processor architecture, with its accompanying hardware implementation and software stack. We use formal models of the complete instruction-set architecture (ISA) at the heart of the design and engineering process, both in lightweight ways that support and improve normal engineering practice - as documentation, in emulators used as a test oracle for hardware and for running software, and for test generation - and for formal verification. We formalise key intended security properties of the design, and establish that these hold with mechanised proof. This is for the same complete ISA models (complete enough to boot operating systems), without idealisation.We do this for CHERI, an architecture with hardware capabilities that supports fine-grained memory protection and scalable secure compartmentalisation, while offering a smooth adoption path for existing software. CHERI is a maturing research architecture, developed since 2010, with work now underway on an Arm industrial prototype to explore its possible adoption in mass-market commercial processors. The rigorous engineering work described here has been an integral part of its development to date, enabling more rapid and confident experimentation, and boosting confidence in the design.
The advantages of measuring multiple wireless links simultaneously has been gaining attention due to the growing complexity of wireless communication systems. Analyzing vehicular communication systems presents a particular challenge due to their rapid time-varying nature. Therefore multi-node channel sounding is crucial for such endeavors. In this paper, we present the architecture and practical implementation of a scalable mobile multi-node channel sounder, optimized for use in vehicular scenarios. We perform a measurement campaign with three moving nodes, which includes a line of sight (LoS) connection on two links and non LoS(NLoS) conditions on the third link. We present the results on the obtained channel delay and Doppler characteristics, followed by the assessment of the degree of correlation of the analyzed channels and time-variant channel rates, hence investigating the suitability of the channel's physical attributes for relaying. The results show low cross-correlation between the transfer functions of the direct and the relaying link, while a higher rate is calculated for the relaying link.
Adversary emulation is an offensive exercise that provides a comprehensive assessment of a system’s resilience against cyber attacks. However, adversary emulation is typically a manual process, making it costly and hard to deploy in cyber-physical systems (CPS) with complex dynamics, vulnerabilities, and operational uncertainties. In this paper, we develop an automated, domain-aware approach to adversary emulation for CPS. We formulate a Markov Decision Process (MDP) model to determine an optimal attack sequence over a hybrid attack graph with cyber (discrete) and physical (continuous) components and related physical dynamics. We apply model-based and model-free reinforcement learning (RL) methods to solve the discrete-continuous MDP in a tractable fashion. As a baseline, we also develop a greedy attack algorithm and compare it with the RL procedures. We summarize our findings through a numerical study on sensor deception attacks in buildings to compare the performance and solution quality of the proposed algorithms.
Cloud-based payments, virtual car keys, and digital rights management are examples of consumer electronics applications that use secure software. White-box implementations of the Advanced Encryption Standard (AES) are important building blocks of secure software systems, and the attack of Billet, Gilbert, and Ech-Chatbi (BGE) is a well-known attack on such implementations. A drawback from the adversary’s or security tester’s perspective is that manual reverse engineering of the implementation is required before the BGE attack can be applied. This paper presents a method to automate the BGE attack on a class of white-box AES implementations with a specific type of external encoding. The new method was implemented and applied successfully to a CHES 2016 capture the flag challenge.
Analysis of the state of development of research on the protection of valuable scientific and educational databases, library resources, information centers, publishers show the importance of information security, especially in corporate information networks and systems for data exchange. Corporate library networks include dozens and even hundreds of libraries for active information exchange, and they (libraries) are equipped with information security tools to varying degrees. The purpose of the research is to create effective methods and tools to protect the databases of the scientific and educational resources from unauthorized access in libraries and library networks using fuzzy logic methods.